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hydrocarbon-degrading bacterium from
petroleum-contaminated soil in Hawaii
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Abstract

Mycobacterium rufum JS14T (=ATCC BAA-1377T, CIP 109273T, JCM 16372T, DSM 45406T), a type strain of the species
Mycobacterium rufum sp. . belonging to the family Mycobacteriaceae, was isolated from polycyclic aromatic
hydrocarbon (PAH)-contaminated soil in Hilo (HI, USA) because it harbors the capability of degrading PAH. Here, we
describe the first genome sequence of strain JS14T, with brief phenotypic characteristics. The genome is composed
of 6,176,413 bp with 69.25 % G + C content and contains 5810 protein-coding genes with 54 RNA genes. The
genome information on M. rufum JS14T will provide a better understanding of the complexity of bacterial catabolic
pathways for degradation of specific chemicals.
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Introduction
Polycyclic aromatic hydrocarbons, defined as organic
molecules consisting of two or more fused aromatic
rings in linear, angular, or cluster arrangement, mostly
result from coke production, petroleum refining, fossil
fuel combustion, and waste incineration [1]. Although
the physical and chemical properties of PAHs vary de-
pending on the number of rings, the characteristics such
as hydrophobicity, recalcitrance, and mutagenic and car-
cinogenic potentials have been considered the main fac-
tors for the toxic effects on environmental ecosystems
and human beings [1, 2].
For removal of PAHs from contaminated environ-

ments, the bioremediation process based on microbial
activities has attracted interest and has been actively
studied [3]. Various bacteria, such as Sphingomonas spp.,
Pseudomonas spp., Rhodococcus spp., Burkholderia spp.,
and Mycobacterium spp., have been investigated regard-
ing whether they can metabolize PAHs. In particular,

several Mycobacterium species have been reported to ef-
fectively degrade high-molecular-weight PAHs [4, 5].
Moreover, genomic studies on these bacterial species
have contributed to the understanding of whole regula-
tory mechanisms of bacterial PAH degradation, for ex-
ample for M. vanbaalenii PYR-1 [6], M. gilvum Spyr1
[7], and M. gilvum PYR-GCK [8] as well as the most re-
cently reported M. aromaticivorans JS19b1T [9].
M. rufum JS14T (=ATCC BAA-1377T, CIP 109273T,

JCM 16372T, DSM 45406T) is the type strain of the spe-
cies Mycobacterium rufum sp. nov. [10]. This bacterium
was isolated from petroleum-contaminated soil at a
former oil gasification company site in Hilo (HI, USA).
The bacterium was identified because of PAH degrad-
ation activities, especially toward a four-ring-fused com-
pound, fluoranthene [11]. Although the PAH-degrading
ability has been demonstrated through metabolic and
proteomic assays [12], genetic studies on the whole bac-
terial system with a PAH degradation pathway have not
been conducted. Here, we present a brief summary of
the characteristics of this strain and a genetic description
of its genome sequence.
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Organism information
Classification and features
The 16S ribosomal RNA gene sequence of M. rufum
JS14T was compared with those from other Mycobacter-
ium species using the BLAST software of NCBI [13].
The highest similarity was found with M. chlorophenoli-
cum PCP-1 (99 % identity) [14, 15] followed by M. gil-
vum Spyr1 (99 % identity) [7], M. gilvum PYR-GCK
(99 % identity) [8], M. vanbaalenii PYR-1 (98 % identity)
[16], and M. fluoranthenivorans FA4T (97 % identity)
[17]. Species identified by the BLAST search and repre-
sented by full-length 16S rRNA gene sequences were in-
cluded in the phylogenetic analysis. The phylogenetic
tree was generated by the neighbor-joining method [18],
and bootstrapping was set to 1000 times for random
replicate selections. The consensus phylogenetic neigh-
borhood of M. rufum JS14T within the genus Mycobac-
terium is shown in Fig. 1.
M. rufum JS14T is a non-motile, aerobic, Gram-positive

bacterium belonging to the family Mycobacteriaceae [10].

Fig. 1 A neighbor-joining phylogenetic tree depicting the position of M. rufum JS14T [10] (shown in boldface with an asterisk) relative to the
other species within the genus Mycobacterium. In this genus, species carrying the full length of 16S rRNA gene sequence were selected from
the NCBI database [45]. The collected nucleotide sequences were aligned using ClustalW [46], and the phylogenetic tree was constructed using
software MEGA version 6 [47] by the neighbor-joining method with 1000 bootstrap replicates [18]. The generated bootstrap values for each
species are presented at the nodes, and the scale bar indicates 0.005 nucleotide changes per nucleotide position. The strains under study and
their corresponding GenBank accession numbers for 16S rRNA genes are as follows: M. chlorophenolicum PCP-I [14, 15] (NR_119093); M. gilvum
Spyr1 [37, 48] (NR_074644); M. gilvum PYR-GCK [37, 48] (NR_074553); M. rhodesiae NBB3 [49] (NR_102870); M. vanbaalenii PYR-1 [16] (NR_074572);
M. fluoranthenivorans FA4 [17, 50] (NR_042224); M. wolinskyi 700010 [51] (NR_119253); M. mageritense 938 [52] (NR_042265); M. smegmatis str. MC2
155 [37, 53] (NR_074726); M. flavescens ATCC 14474 [37, 54] (NR_044815); M. novocastrense 73 [55] (NR_029208); M. insubricum FI-06250 [56]
(NR_125525); M. florentinum FI-93171 [57] (NR_042223); M. montefiorense ATCC BAA-256 [58, 59] (NR_028808); M. confluentis 1389/90 [60]
(NR_042245); M. holsaticum 1406 [61] (NR_028945); M. elephantis DSM 44368 [62] (NR_025296); M. marinum M [37, 63] (NR_074864); M. ulcerans
Agy99 [37, 64] (NR_074861); M. bovis BCG str. Pasteur 1173P2 [37, 65] (NR_074838); M. canettii CIPT 140010059 [66] (NR_074836); M. africanum
GM041182 [37, 67] (NR_074835)

Fig. 2 A scanning electron micrograph of M. rufum JS14T. The image
was taken using a Field Emission Scanning Electron Microscope
(SU8220; Hitachi, Japan) at an operating voltage of 10.0 kV. The scale
bar represents 5.0 μm
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The cell shape is medium-to-long thin rods, and cell size
is approximately 1.0–2.0 μm in length with the width of
0.4–0.6 μm as shown in Fig. 2. Generally, large, round,
raised, smooth orange-pigmented colonies form within
7 days [10]. As one of the rapidly growing members of the
genus Mycobacterium, the strain grows optimally at 28 °C,
reduces nitrate, but does not tolerate salinity (over 2.5 %
NaCl, w/v) [10]. Strain JS14T shows positive reactions in
tests for catalase, α-glucosidase, aesculin hydrolysis, and
urease, but negative reactions regarding β-glucuronidase,
β-galactosidase, N-acetyl-β-glucosaminidase, gelatin hy-
drolysis, alkaline phosphatase, and pyrrolidonyl arylami-
dase activities [10]. Substrate oxidation was noticed for

Tween 40, Tween 80, D-gluconic acid, D-glucose, D-
fructose, D-xylose, D-mannose, D-psicose, trehalose,
dextrin, glycogen, and D-mannitol, but not for α-/β-cyclo-
dextrin, D-galactose, α-D-lactose, maltose, sucrose, man-
nan, or maltotriose [10]. When cultured in the minimal
medium (per liter: 8.8 g of Na2HPO4°2H2O, 3.0 g of
KH2PO4, 1.0 g of NH4Cl, 0.5 g of NaCl, 1.0 mL of 1 M
MgSO4, and 2.5 mL of a trace element solution [per liter:
23 mg of MnCl2°2H2O, 30 mg of MnCl4∙H2O, 31 mg of
H3BO3, 36 mg of CoCl2°6H2O, 10 mg of CuCl2°2H2O,
20 mg of NiCl2°6H2O, 30 mg of Na2MoO4°2H2O, and
50 mg of ZnCl2]) [11] supplemented with the four-
aromatic ring-fused PAH compound fluoranthene (final

Table 1 Classification and general features of M. rufum JS14T [22]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [33]

Phylum Actinobacteria TAS [34]

Class Actinobacteria TAS [35]

Order Actinomycetales TAS [36–38]

Family Mycobacteriaceae TAS [37–39]

Genus Mycobacterium TAS [37, 40, 41]

Species Mycobacterium rufum TAS [37, 39]

(Type) strain: JS14T (=ATCC BAA-1377T, CIP 109273T,
JCM 16372T, DSM 45406T)

TAS [10]

Gram stain Positive: weak uptake of Gram stain TAS [10]

Cell shape Medium to long thin rods TAS [10]

Colony pigmentation Orange TAS [10]

Motility Non-motile TAS [10]

Sporulation Not reported NAS

Temperature range Mesophile NAS

Optimum temperature 28 °C TAS [10]

pH range; Optimum 7.0–8.0; 7.5 NAS

Carbon source Fluoranthene, glucose, fructose, mannitol,
trehalose, xylose, others

TAS [10–12]

Energy source Fluoranthene TAS [11, 12]

MIGS-6 Habitat Soil TAS [10]

MIGS-6.3 Salinity Not tolerant salinity (2.5–5.0 % NaCl, w/v) TAS [10]

MIGS-22 Oxygen requirement Aerobic TAS [10]

MIGS-15 Biotic relationships Free living NAS

MIGS-14 Pathogenicity None NAS

MIGS-4 Geographic location Hawaii, United States TAS [10]

MIGS-5 Sample collection February, 2003 NAS

MIGS-4.1 Latitude 19° 49′ 20″ N TAS [11]

MIGS-4.2 Longitude 155° 05′ 01″ W TAS [11]

MIGS-4.3 Depth Not reported

MIGS-4.4 Altitude Not reported
aEvidence codes. IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author
Statement (i.e., not directly observed for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These
evidence codes are from the Gene Ontology project [42]

Kwak et al. Standards in Genomic Sciences  (2016) 11:47 Page 3 of 9

http://doi.org/10.1601/nm.6310


concentration of 40 mg/L), M. rufum JS14T showed an
effective degrading action on the added compound by util-
izing it completely during 10 days as a sole source of car-
bon and energy [11].

Chemotaxonomic data
The main cellular fatty acids of M. rufum JS14T are
C18:1ω9c (36.72 %), C16:0 (26.24 %), C16:1ω7c +
C16:1ω6c (9.40 %), C17:1ω7c (8.44 %), C14:0 (5.27 %),
C18:0 (3.14 %), and C17:0 (1.94 %), respectively [10].
The profile of whole-cell fatty acids showed a pattern
similar to that of the other representative of Mycobacter-
ium species [10, 19–21]. The strain showed bright red
color under a microscope after acid-fast staining. A
gas chromatogram of fatty acid methyl esters from
the transmethylated cells of M. rufum JS14T revealed
a major C24:0 peak and a trace of a C22:0 peak. The
general characteristics of the strain are summarized
in Table 1.

Genome sequencing information
Genome project history
Strain M. rufum JS14T was selected for sequencing be-
cause of its effective ability to degrade PAH, as a model
organism for a recalcitrant organic-pollutant-degrading
bacterium. The genome sequencing was performed in
September, 2014, and the Whole Genome Shotgun project
was deposited in the DDBJ/EMBL/GenBank databases
under the accession number JROA00000000. The version
described in this study is the first version, labeled
JROA00000000.1. The sequencing project information
and its association with the Minimum Information about
a Genome Sequence version 2.0 compliance [22] are de-
scribed in Table 2.

Growth conditions and genomic DNA preparation
M. rufum JS14T from Deutsche Sammlung von Mikroor-
ganismen und Zellkulturen GmbH (strain accession num-
ber DSM 45406T) was used for preparation of genomic
DNA. The strain was cultured aerobically in a 250-mL
Erlenmeyer flask containing 50 mL of tryptic soy broth
(Difco Laboratories Inc., Detroit, MI), on a rotary shaker
at 200 rpm and 30 °C. Genomic DNA was isolated from
50 mL of culture using the QIAamp® DNA Mini Kit
(Qiagen, Valencia, CA) following the standard protocol
recommended by the manufacturer. The quantity and
purity of the extracted genomic DNA were assessed
with a Picodrop Microliter UV/Vis Spectrophotometer

Table 2 Project information

MIGS ID Property Term

MIGS-31 Finishing quality Draft

MIGS-28 Libraries used 20 kb SMRT-bell library

MIGS-29 Sequencing platforms PacBio RS II

MIGS-31.2 Fold coverage 113.03×

MIGS-30 Assemblers RS HGAP Assembly Protocol [24] in SMRT analysis pipeline v.2.2.0

MIGS-32 Gene-calling method NCBI Prokaryotic Genome Annotation Pipeline [43]; GeneMarkS+ [44]

Locus Tag EU78

INSDC ID JROA00000000

GenBank Date of Release October 2, 2014

GOLD ID Gi0074119

BIOPROJECT PRJNA247390

MIGS-13 Source Material Identifier ATCC BAA-1377T, CIP 109273T, JCM 16372T, DSM 45406T

Project relevance Environmental

Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 6,176,413 100.00

DNA coding (bp) 5,622,516 91.03

DNA G + C (bp) 4,277,025 69.25

DNA scaffolds 4 100.00

Total genes 5864 100.00

Protein-coding genes 5810 99.08

RNA genes 54 0.92

Pseudogenes 367 6.26

Genes in internal clusters 944 16.10

Genes with function prediction 4498 76.71

Genes assigned to COGs 3669 62.57

Genes with Pfam domains 4544 77.49

Genes with signal peptides 314 5.35

Genes with transmembrane helices 1227 20.92

CRISPR repeats 0 0.00
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(Thermo Fisher Scientific Inc., Waltham, MA) and Qubit®
2.0 Fluorometer (Fisher Scientific Inc.), respectively. Finally,
a DNA concentration of 780.0 ng/μL and OD 260/OD 280 of
1.87 was determined.

Genome sequencing and assembly
The genome of M. rufum JS14T was sequenced using
the single-molecule real-time DNA sequencing platform
on the Pacific Biosciences RS II sequencer with P5 poly-
merase - C3 sequencing chemistry (Pacific Biosciences,
Menlo Park, CA) [23]. A 20-kb insert SMRT-bell library
was prepared from the sheared genomic DNA and
loaded onto two SMRT cells. During the single 180-min
run-time, 1,020,750,498 read bases were generated with
300,584 reads. Reads of less than 100 bp or with low ac-
curacy (below 0.8) were removed. In total, 111,515 reads
produced 823,795,879 bases with a read quality of 0.831.
All post-filtered reads were assembled de novo using

the RS hierarchical genome assembly process, version
3.3 in SMRT analysis software, version 2.2.0 (Pacific Bio-
sciences) [24] and resulted in 4 contigs corresponding to
4 scaffolds, with 113.03-fold coverage. The maximal
contig length and N50 contig length had the same size
of 5,760,162 bp. The whole genome was found to be
6,176,413 bp long.

Genome annotation
The protein-coding sequences were predicted by Prokary-
otic Genome Annotation Pipeline, version 2.8, on the NCBI
website (rev. 447580) [25]. Additional gene prediction and
functional annotation were performed in the Rapid Anno-
tation using Subsystems Technology server [26] and Inte-
grated Microbial Genomes-Expert Review pipeline [27],
respectively.

Genome properties
The genome size of M. rufum JS14T was found to be
6,176,413 bp with the average G + C content of 69.25 %.
The genome was predicted to contain a total of 5864
genes, which include 5810 protein-coding genes with 54
RNA genes (6 rRNAs, 47 tRNAs, and 1 ncRNA). Of
these, 4498 genes were assigned to putative functions,
and 3669 genes (approximately 62.57 %) were assigned
to the COG functional categories. The genome statistics
are presented in Table 3 and Fig. 3, respectively. The
gene distribution within the COG functional categories
is presented in Table 4.

Insights from the genome sequence
Regarding the specific degradation capability toward the
four-aromatic-ring-fused compound, fluoranthene [10–12],

Fig. 3 A graphical circular map of the M. rufum JS14T genome. The circular map was generated using the BLAST Ring Image Generator software
[68]. From the inner circle to the outer circle: Genetic regions; GC content (black), and GC skew (purple/green), respectively
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the genome of M. rufum JS14T was found to contain corre-
sponding genes encoding proteins for the aromatic-
compound degradation.
Generally, it is known that an initial step of the bacterial

degradation of PAHs is mainly catalyzed by multicompo-
nent dioxygenases that produce dihydrodiols [28, 29].
In the genome, multiple genes encoding various dioxy-
genases such as aromatic-ring-hydroxylating dioxygen-
ase (EU78_28655, 28730, 29130), extradiol dioxygenase
(EU78_24090, 26390), protocatechuate 3,4-dioxygenase
alpha subunit (EU78_29035), protocatechuate 3,4-dioxy-
genase beta subunit (EU78_29030), phthalate 3,4-dioxy-
genase ferredoxin reductase subunit (EU78_29090), and
extradiol ring-cleavage dioxygenase (EU78_16970, 28720)
were predicted. In addition, the genes coding for such en-
zymes as cytochrome P450 (EU78_02320, 09230, 14085,
14465, 20055, 26160), methyltransferase (EU78_01005),
flavin-dependent oxidoreductase (EU78_19900), and
3,4-dihydroxyphthalate decarboxylase (EU78_28715)
were also identified as functional genes on the Kyoto

Encyclopedia of Genes and Genomes map [30] for the
PAH degradation. Nonetheless, when compared with the
complete genome sequences of PAH-degrading organisms
[6–9], several genes coding for representative functional
enzymes with relevance to PAH degradation such as nidA
(PAH dioxygenase large subunit), nidB (PAH dioxygenase
small subunit), phtAa (phthalate 3,4-dioxygenase
alpha subunit), phtAb (phthalate 3,4-dioxygenase beta
subunit), phtB (phthalate 3,4-cis-dihydrodiol dehydro-
genase), phdE (cis-3,4-dihydrophenanthrene-3,4,-diol
dehydrogenase), and phdK (2-formylbenzoate de-
hydrogenase) were not identified (shown in Table 5).
Generally, research on bacteria degrading PAHs holds

great promise for biotechnological applications to de-
contamination of pollutants [10]. In this regard, under-
standing of PAH degradation by indigenous microbes is
important for evaluation of ecological effects of these
microbes [31]. On Hawaiian islands, PAH contamination
has occurred through various activities such as the pet-
roleum industry, waste incineration, and fossil fuel

Table 4 Numbers of genes associated with general COG functional categories

Code Value % age Description

J 181 4.25 Translation, ribosomal structure and biogenesis

A 1 0.02 RNA processing and modification

K 353 8.29 Transcription

L 118 2.77 Replication, recombination and repair

B 0 0.00 Chromatin structure and dynamics

D 32 0.75 Cell cycle control, cell division, chromosome partitioning

V 98 2.30 Defense mechanisms

T 173 4.06 Signal transduction mechanisms

M 210 4.93 Cell wall/membrane/envelope biogenesis

N 12 0.28 Cell motility

U 22 0.52 Intracellular trafficking, secretion, and vesicular transport

O 142 3.34 Post-translational modification, protein turnover, chaperones

C 312 7.33 Energy production and conversion

G 245 5.76 Carbohydrate transport and metabolism

E 333 7.82 Amino acid transport and metabolism

F 89 2.09 Nucleotide transport and metabolism

H 266 6.25 Coenzyme transport and metabolism

I 422 9.91 Lipid transport and metabolism

P 224 5.26 Inorganic ion transport and metabolism

Q 264 6.20 Secondary metabolites biosynthesis, transport and catabolism

R 516 12.12 General function prediction only

S 209 4.91 Function unknown

W 2 0.05 Extracellular structures

X 33 0.78 Mobilome: prophages, transposons

- 2195 37.43 Not in COGs

The total is based on the total number of protein coding genes in the annotated genome
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combustion, even via natural causes such as volcanic ac-
tivity [10]. Mycobacterium is a well-known genus cap-
able of mineralizing PAHs [12]. Considering the
Hawaiian delicate island ecosystem, several native bac-
teria belonging to the genus Mycobacterium were iso-
lated, M. rufum JS14T is one of them [10].
One of native isolates from the petroleum-contaminated

Hawaiian soil in Hilo (HI, USA), M. aromaticivorans
JS19b1T [10], is known to have rapid degrading capabil-
ities toward various PAHs such as fluorene, phenanthrene,
pyrene, and fluoranthene [10, 11, 29]. Similarly, M. rufum
JS14T was found as an effective degrader of a four-
aromatic-ring-fused compound, fluoranthene, not show-
ing degrading capacity toward other high-molecular-
weight PAHs (e.g., pyrene, benzo[a]pyrene) or toward
low-molecular-weight PAHs (e.g., fluorene, phenanthrene)
[11, 12]. The gene annotation profiles for the genome of
M. rufum JS14T may provide important clues to the iden-
tity of the whole metabolic pathway for fluoranthene deg-
radation. Just as a recent study on the functional pan-
genome analysis of the genus Mycobacterium capable
of degrading PAHs [32], our data can also help to ex-
plain the complexity of bacterial catabolic pathways
for degradation of specific chemicals, from the stand-
point of microbial ecology.

Conclusions
M. rufum JS14T was isolated from PAH-contaminated soil
of a former oil gasification company site in Hilo (HI,

USA) and was designated as a novel species that was
named Mycobacterium rufum (ru’fum. L. neut. adj. rufum
ruddy or red, pertaining to the colony pigmentation of the
type strain) [10]. In this study, we presented the genome
sequence of the strain. This genetic information may pro-
vide new insights that will help to extend the application
potential of bacterial bioremediation of various toxic com-
pounds and to elucidate the features of metabolic degrad-
ation pathways for PAHs.
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Table 5 Comparison of the functional gene counts in the function profile of genome sequences

Function ID Name M. vana M. gil GCKa M. gil Sp1a M. arob M. rufb

KO:K00448 protocatechuate 3,4-dioxygenase, alpha subunit [EC:1.13.11.3] (pcaG) 1 1 1 1 3

KO:K00449 protocatechuate 3,4-dioxygenase, beta subunit [EC:1.13.11.3] (pcaH) 1 1 1 1 2

KO:K18253 phthalate 3,4-dioxygenase ferredoxin subunit (phtAc) 0 2 1 2 1

KO:K18254 phthalate 3,4-dioxygenase ferredoxin reductase subunit [EC:1.18.1.3] (phtAd) 1 2 1 0 1

KO:K00517 E1.14.-.- (cytochrome P450) 12 10 10 5 6

KO:K18256 3,4-dihydroxyphthalate decarboxylase [EC:4.1.1.69] (phtC) 1 2 1 0 1

KO:K11943 PAH dioxygenase large subunit [EC:1.13.11.-] (nidA) 1 2 1 1 0

KO:K11944 PAH dioxygenase small subunit [EC:1.13.11.-] (nidB) 2 4 2 4 0

KO:K11948 1-hydroxy-2-naphthoate dioxygenase [EC:1.13.11.38] (phdI) 1 2 1 0 0

KO:K11949 4-(2-carboxyphenyl)-2-oxobut-3-enoate aldolase [EC:4.1.2.34] (phdJ) 1 2 1 1 0

KO:K18251 phthalate 3,4-dioxygenase alpha subunit [EC:1.14.12.-] (phtAa) 1 2 1 0 0

KO:K18252 phthalate 3,4-dioxygenase beta subunit [EC:1.14.12.-] (phtAb) 1 2 1 1 0

KO:K18255 phthalate 3,4-cis-dihydrodiol dehydrogenase [EC:1.3.1.-] (phtB) 1 2 1 1 0

KO:K18257 cis-3,4-dihydrophenanthrene-3,4-diol dehydrogenase [EC:1.3.1.49] (phdE) 1 2 1 1 0

KO:K18275 2-formylbenzoate dehydrogenase [EC:1.2.1.78] (phdK) 1 1 1 1 0

Comparison of the selected five genome sequences was conducted using function profile categories in the IMG-ER pipeline [27], and the genome sequences ana-
lyzed are as follows: M. van, M. vanbaalenii PYR-1 (IMG Genome ID 639633044) [6]; M. gil GCK, M. gilvum PYR-GCK (IMG Genome ID 640427122) [8]; M. gil Sp1, M.
gilvum Spyr1 IMG Genome ID 649633070) [7]; M. aro, M. aromaticivorans JS19b1 (whole Genome Sequencing) (IMG Genome ID 2558309009) [9]; M. ruf, M. rufum
JS14 (whole Genome Sequencing) (IMG Genome ID 2593339261)
Reported sequencing status for the individual genome set: a Complete genome sequence; b Draft whole-genome sequence
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