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Abstract

Here, we report the draft genome sequence of Micromonospora sp. DSW705 (=NBRC 110037), a producer of antitumor
cyclic depsipeptides rakicidins A and B, together with the features of this strain and generation, annotation, and
analysis of the genome sequence. The 6.8 Mb genome of Micromonospora sp. DSW705 encodes 6,219 putative ORFs,
of which 4,846 are assigned with COG categories. The genome harbors at least three type I polyketide synthase (PKS)
gene clusters, one nonribosomal peptide synthetase (NRPS) gene clusters, and three hybrid PKS/NRPS gene clusters. A
hybrid PKS/NRPS gene cluster encoded in scaffold 2 is responsible for rakicidin synthesis. DNA database search
indicated that the biosynthetic gene clusters for depsipeptides bearing 4-amino-2,4-pentadienoate are widely present
in taxonomically diverse actinomycetes.
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Introduction
In our screening of antitumor compounds from rare
actinomycetes, Micromonospora sp. DSW705 collected
from deep seawater was found to produce rakicidins A
and B. Rakicidins are fifteen-membered cyclic depsipep-
tides comprising three amino acids and a modified fatty
acid. The most intriguing feature of rakicidins is the
presence of a rare unusual amino acid, 4-amino-2,4-pen-
tadienoate (APDA) in their cyclic structures, which is
present only in a limited range of secondary metabolites
of actinomycetes [1–3]. To date, five rakicidin congeners
have been reported; rakicidins A, B, and E were isolated
from Micromonospora, and rakicidins C and D from
Streptomyces [4–7]. Recently, we disclosed the
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biosynthetic gene (rak) cluster for rakicidin D through
the genome analysis of Streptomyces sp. MWW064 and
proposed its biosynthetic pathway [8]. In this study, the
whole genome shotgun sequencing of Micromonospora
sp. DSW705 was conducted to assess its potential in
secondary metabolism, to identify the biosynthetic genes
for rakicidins A and B, and to make a comparative analysis
with the gene cluster of rakicidin D in Streptomyces sp.
MWW064. We here report the draft genome sequence of
Micromonospora sp. DSW705, together with the taxonom-
ical identification of the strain, description of its genome
properties, and annotation of the rakicidin gene cluster.
Furthermore, we investigated distribution of the rak–like
clusters in other bacterial strains to evaluate the gene distri-
bution in taxonomically diverse actinomycetes.
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Organism information
Classification and features
In the screening of antitumor compounds from rare
actinomycetes, Micromonospora sp. DSW705 was iso-
lated from deep seawater collected in Toyama Bay, Japan
and found to produce BU-4664 L and rakicidins A and B
(unpublished). The general feature of this strain is shown
in Table 1. This strain grew well on ISP 2 and ISP 4 agars.
Table 1 Classification and general features of Micromonospora
sp. DSW705 [16]

MIGS ID Property Term Evidence codea

Classification Domain Bacteria TAS [23]

Phylum Actinobacteria TAS [24]

Class Actinobacteria TAS [25]

Order Actinomycetales TAS [25–28]

Suborder
Micromonosporineae

TAS [25, 28]

Family Micromonosporaceae TAS [25, 27–30]

Genus Micromonospora TAS [27, 31]

Species undetermined -

Strain DSW705 IDA

Gram stain Not tested, likely positive NAS

Cell shape Branched mycelia IDA

Motility Not reported

Sporulation Sporulating IDA

Temperature
range

Grows from 20 °C to 45 °C IDA

Optimum
temperature

37 °C IDA

pH range;
Optimum

5 to 8; 7 IDA

Carbon
source

Arabinose, fructose, glucose,
raffinose, sucrose, xylose

IDA

MIGS-6 Habitat Sea water NAS

MIGS-6.3 Salinity Grows from 0 % to 3 % NaCl IDA

MIGS-22 Oxygen
requirement

Aerobic IDA

MIGS-15 Biotic
relationship

Free-living IDA

MIGS-14 Pathogenicity Not reported

MIGS-4 Geographic
location

Toyama Bay, Japan NAS

MIGS-5 Sample
collection

October 10, 2005 NAS

MIGS-4.1 Latitude Not reported

MIGS-4.2 Longitude Not reported

MIGS-4.4 Altitude Not reported
aEvidence codes - IDA Inferred from Direct Assay, TAS Traceable Author
Statement (i.e., a direct report exists in the literature), NAS Non-traceable
Author Statement (i.e., not directly observed for the living, isolated sample,
but based on a generally accepted property for the species, or anecdotal
evidence). These evidence codes are from the Gene Ontology project [32]
On ISP 7 agars, the growth was poor. No growth was
observed on ISP 5 agar. No aerial mycelia were ob-
served. Substrate mycelium was orange, turning dark
brown on sporulation on ISP 2 agar. No diffusible
pigment was observed on ISP 2, ISP 3, ISP 4, ISP 5,
ISP 6, and ISP 7 agar media. The strain bored single
spore on short sporophore. The spores were spherical
(0.7–0.8 μm in diameter) with wrinkle surface. A
scanning electron micrograph of the strain is shown
in Fig. 1. Growth occurred at 20–45 °C (optimum
37 °C) and pH 5–8 (optimum pH 7). Strain DSW705
exhibited growth with 0–3 % (w/v) NaCl (optimum
0 % NaCl). Strain DSW705 utilized arabinose,
fructose, glucose, raffinose, sucrose, and xylose for
growth. This strain was deposited in the NBRC
culture collection with the registration number of
NBRC 110037. The genes encoding 16S rRNA were
amplified by PCR using two universal primers, 9 F
and 1541R. After purification of the PCR product by
AMPure (Beckman Coulter), the sequencing was
carried out according to an established method [9].
Homology search of the sequence by EzTaxon-e [10]
indicated the highest similarity (99.66 %, 1448/1453)
to Micromonospora chalcea DSM 43026T (X92594) as
the closest type strain. A phylogenetic tree was recon-
structed using ClustalX2 [11] and NJPlot [12] on the
basis of the 16S rRNA gene sequence together with
those of taxonomically close type strains showing over
98.5 % similarities. Evolutionary distances were
calculated using Kimura’s two-parameter model [13].
The tree has been deposited into TreeBase (http://
purl.org/phylo/treebase/phylows/study/TB2:S19405). In
the phylogenetic tree, strain DSW705 and M. chalcea
DSM 43026T (X92594) formed a monophyletic cluster
with a bootstrap resampling value of 100 % (Fig. 2).
Fig. 1 Scanning electron micrograph of Micromonospora sp. DSW705
grown on 1/2 ISP 2 agar for 7 days at 28 °C. Bar, 2 μm
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Fig. 2 Phylogenetic tree of Micromonospora sp. DSW705 and phylogenetically close type strains showing over 98.5 % similarity to strain DSW705
based on 16S rRNA gene sequences. The accession numbers for 16S rRNA genes are shown in parentheses. The tree was reconstructed by the
neighbor-joining method [34] using sequences aligned by ClustalX2 [11]. All positions containing gaps were eliminated. The building of the tree also
involves a bootstrapping process repeated 1,000 times to generate a majority consensus tree, and only bootstrap values above 50 % are shown at
branching points. Actinoplanes teichomyceticus NBRC 13999T was used as an outgroup. Bar, 0.005 Knuc substitutions per nucleotide position

Table 2 Project information

MIGS ID Property Term

MIGS 31 Finishing quality Improved-high-quality draft

MIGS-28 Libraries used 454 shotgun library, Illumina
paired-end library

MIGS 29 Sequencing platforms 454 GS FLX+, Illumina HiSeq1000
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Chemotaxonomic data
The isomer of diaminopimelic acid in the whole-cell
hydrolysate was analyzed according to the method
described by Hasegawa et al. [14]. Isoprenoid quinones and
cellular fatty acids were analyzed as described previously
[15]. The whole-cell hydrolysate of strain DSW705 con-
tained meso-diaminopimelic acid as its diagnostic peptido-
glycan diamino acid. The predominant menaquinone was
identified as MK-10(H4); MK-9(H4), MK-10(H2), and MK-
10(H6) were also detected as minor components. The
major cellular fatty acids were found to be iso-C16:0, iso-
C15:0 and anteiso-C17:0.
MIGS 31.2 Fold coverage 5 ×, 100 ×, respectively

MIGS 30 Assemblers Newbler v2.6, GenoFinisher

MIGS 32 Gene calling method Progidal

Locus tag MSP03

GenBank ID BBVA00000000

GenBank date of release March 30, 2016

GOLD ID Not registered

BioProject PRJDB3540

MIGS 13 Source material identifier NBRC 110037

Project relevance Industrial
Genome sequencing information
Genome project history
In collaboration between Toyama Prefectural University
and NBRC, the organism was selected for genome se-
quencing to elucidate the rakicidin biosynthetic pathway.
The draft genome sequences have been deposited in the
INSDC database under the accession number
BBVA01000001-BBVA01000024. The project informa-
tion and its association with MIGS version 2.0 compli-
ance are summarized in Table 2 [16].
Growth conditions and genomic DNA preparation
Micromonospora sp. DSW705 was deposited in the NBRC
culture collection with the registration number of NBRC
110037. The monoisolate of strain DSW705 was grown on
a polycarbonate membrane filter (Advantec) on double
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Table 3 Genome statistics

Attribute Value % of Total

Genome size (bp) 6,795,311 100.0

DNA coding (bp) 6,219,133 91.5

DNA G + C (bp) 4,955,456 72.9

DNA scaffolds 24 -

Total genes 6,273 100.0

Protein coding genes 6,219 99.1

RNA genes 54 0.9

Pseudogenes - -

Genes in internal clusters 2,376 37.8

Genes with function prediction 3,909 62.3

Genes assigned to COGs 4,846 77.2

Genes with Pfam domains 5,528 84.1

Genes with signal peptides 480 7.7

Genes with transmembrane helices 1,546 24.6

CRISPR repeats 0 -

Table 4 Number of genes associated with general COG functional
categories

Code Value % age Description

J 234 4.8 Translation, ribosomal structure and biogenesis

A 1 0.02 RNA processing and modification

K 606 12.5 Transcription

L 285 5.9 Replication, recombination and repair

B 2 0.04 Chromatin structure and dynamics

D 63 1.3 Cell cycle control, Cell division, chromosome
partitioning

V 125 2.6 Defense mechanisms

T 315 6.5 Signal transduction mechanisms

M 281 5.8 Cell wall/membrane biogenesis

N 37 0.76 Cell motility

U 77 1.6 Intracellular trafficking and secretion

O 174 3.6 Posttranslational modification, protein
turnover, chaperones

C 345 7.1 Energy production and conversion

G 475 9.8 Carbohydrate transport and metabolism

E 587 12.1 Amino acid transport and metabolism

F 110 2.2 Nucleotide transport and metabolism

H 221 4.5 Coenzyme transport and metabolism

I 277 5.7 Lipid transport and metabolism

P 344 7.1 Inorganic ion transport and metabolism

Q 282 5.8 Secondary metabolites biosynthesis,
transport and catabolism

R 984 20.3 General function prediction only

S 457 9.4 Function unknown

- 1,373 28.3 Not in COGs

The total is based on the total number of protein coding genes in the genome
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diluted NBRC 227 agar medium (0.2 % yeast extract, 0.5 %
malt extract, 0.2 % glucose, 2 % agar, pH 7.3) at 28 °C. High
quality genomic DNA for sequencing was isolated from the
mycelia using an EZ1 DNATissue Kit and a Bio Robot EZ1
(Qiagen) according to the protocol for extraction of nucleic
acid from Gram-positive bacteria. The size, purity, and
double-strand DNA concentration of the genomic DNA
were measured by pulsed-field gel electrophoresis, ratio of
absorbance values at 260 nm and 280 nm, and Quant-iT
PicoGreen dsDNA Assay Kit (Life Technologies), respect-
ively, to assess the quality of genomic DNA.
Genome sequencing and assembly
Shotgun and paired-end libraries were prepared and subse-
quently sequenced using 454 pyrosequencing technology
and HiSeq1000 (Illumina) paired-end technology, respect-
ively (Table 2). The 36 Mb shotgun sequences and 682 Mb
paired-end sequences were assembled using Newbler v2.6
and subsequently finished using GenoFinisher [17] to yield
24 scaffolds larger than 500 bp. The N50 was 629,027 bp.
Genome annotation
Coding sequences were predicted by Prodigal [18]
and tRNA-scanSE [19]. The gene functions were an-
notated by an in-house genome annotation pipeline,
and searched for domains related to polyketide synthase
(PKS) and nonribosomal peptide synthetase (NRPS)
using the SMART and PFAM domain databases. PKS
and NRPS gene clusters and their domain organizations
Table 5 Modular PKS and NRPS gene clusters in Micromonospora
sp. DSW705

Gene
cluster

Encoded in No. of
modular
PKS and
NRPS genes

No. of
modules

Backbone of
predicted
product

pks/nrps-1 (rak) scaffold 2 6 7 R-C3-C3
a-Ser-C2-

Gly-X

pks/nrps-2 scaffold 2 6 6 X-X-X-?-C2-Ser

pks/nrps-3 scaffold 2 5 6 X-X-?-C2-Asn-Ser

pks-1 scaffold 2 12 33 R-C2-C3-C2-C2-C2-
C2-C2-C4-C2-C2-C2-
C2-C2-C2-C2-C2-C2-
C?-C2-C3-C2-C2-C3-
C2-C3-C3-C2-C3-C3-
C3-C2-C2

pks-2 scaffold 5 1 1 C2

pks-3 scaffold 24 1 1 C2

nrps-1 scaffold 2 2 2 X-Ala

R starter molecule, C3 C3 unit derived from methylmalonyl-CoA, C2 C2 unit
derived from malonyl-CoA, X amino acid unpredicted, ? lack of A domain in the
NRPS module, C4 C4 unit derived from ethylmalonyl-CoA or methoxymaronyl-
CoA, C? substrate of AT domain was not predicted
aAlthough antiSMASH predicted that the AT domain incorporates malonyl-CoA
as the substrate, the signature sequence for substrate determination is not
HAFHS for malonyl-CoA but TSSHS likely for methylmaronyl-CoA [33]
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Fig. 3 Genetic map of rakicidin biosynthetic gene cluster of Streptomyces sp. MWW064 (a) and Micromonospora sp. DSW705 and the biosynthetic
mechanism of rakicidins A and B (b)
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were determined as reported previously [9] and using
antiSMASH [20]. Substrates of adenylation (A) and
acyltransferase (AT) domains were predicted using anti-
SMASH. BLASTP search against the NCBI nr databases
were also used for predicting function of proteins encoded
in the rak cluster.

Genome properties
The total size of the genome is 6,795,311 bp and the GC
content is 72.9 % (Table 3), similar to other genome-
Table 6 ORFs in the rakicidin-biosynthetic gene cluster of Micromon

MSP03_02_
(locus tag)

Size (aa) Deduced function Protein homolog [origin]

06020 1,046 Transcriptional
regulator

Transcriptional regulator [Micro

06030 564 Monooxygenase Monooxygenase [Micromonosp

06040 314 Unknown Hypothetical protein [Salinispor

06050 674 Unknown LigA protein [Micromonospora

06060 2,944 PKS Hypothetical protein [Micromon

06070 1,608 PKS Non-ribosomal peptide synthet

06080 1,123 NRPS Non-ribosomal peptide synthet

06090 1,883 PKS Beta-ketoacyl synthase [Microm

06100 1,517 NRPS Hypothetical protein, partial [M

06110 1,563 NRPS Hypothetical protein [Micromon

06120 570 ABC transporter Pyoverdine ABC transporter pe
[Micromonospora sp. M42]

06130 287 Type-II thioesterase Gramicidin S biosynthesis prote

06140 955 NRPS Non-ribosomal peptide synthet

06150 329 Asparagine
oxygenase

Clavaminate synthase [Micromo

06160 771 Transporter Membrane protein mmpL11 [M
sequenced Micronomospora members. Of the total 6,273
genes, 6,219 are protein-coding genes and 54 are RNA
genes. The classification of genes into COGs functional
categories is shown in Table 4. As for secondary metabol-
ite pathways by modular PKSs and NRPSs, Micromonos-
pora sp. DSW705 has at least three hybrid PKS/NRPS
gene clusters, three type I PKS gene clusters, and one
NRPS gene clusters. According to the assembly line mech-
anism [21], we predicted the chemical structures which
each cluster would synthesize (Table 5), suggesting the
ospora sp. DSW705

Identity/
similarity (%)

Accession
number

monospora purpureochromogenes] 95/95 WP_030498969

ora purpureochromogenes] 94/95 WP_030498970

a pacifica] 66/75 WP_027650590

sp. M42] 99/99 EWM62996

ospora purpureochromogenes] 95/96 WP_036342114

ase [Micromonospora sp. M42] 93/93 EWM63000

ase [Micromonospora sp. M42] 99/100 EWM63002

onospora purpureochromogenes] 97/97 WP_030498975

icromonospora purpureochromogenes] 97/97 WP_036342201

ospora purpureochromogenes] 95/95 WP_030498977

rmease/ATP-binding protein 100/100 EWM63008

in GrsT [Micromonospora sp. M42] 98/98 EWM63009

ase [Micromonospora sp. M42] 99/99 EWM63010

nospora sp. M42] 100/100 EWM63011

icromonospora sp. M42] 99/99 EWM63012
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potential of Micromonospora sp. DSW705 to produce di-
verse polyketide- and nonribosomal peptide-compounds
as secondary metabolites.

Insights from the genome sequence
Rakicidin biosynthetic gene cluster in Micromonospora sp.
DSW705
Our previous study revealed that rakicidin is synthesized
by a hybrid PKS/NRPS gene cluster. Its domain
organization is shown in Fig. 3a [8]. Among the three
a

b

c

d

Fig. 4 Hybrid PKS/NRPS gene clusters for depsipeptides bearing 4-amino-2,4-pe
actinomycete strains. Gene clusters for rakicidins (a), vinylamycin-related compo
of APDAs are shaded in light gray. Terminals of scaffold sequences are shown in
Micromonospora purpureochromogenes NRRL B-2672, IH31_RS0100575 to IH31_R
“Streptomyces rubellomurinus” ATCC 31215, VM95_RS28100 to VM95_RS28120; F
FF86_101835 to FF86_101841; Frankia sp. CpI1-S, FF36_02633 to FF36_02639; St
Streptomyces vitaminophilus DSM 41686T, A3IG_RS0122990 to A3IG_RS0122970;
B121_RS37950; Streptomyces sp. CNQ-509, AA958_29290 to AA958_29325; Strep
Streptomyces griseolus NRRL B-2925T, IH14_RS0112325 to IH14_RS0112355; Strept
tomyces sp. DpondAA-B6, K379_RS0125155 to K379_RS0125185; Streptomyces sp
DT87_RS01535 to DT87_RS01505; Streptomyces sp. WMMB 714, H181_RS01075
Streptomyces sp. MspMP-M5, B073_RS0123900 to B073_RS40860; Nocardiposis sp
CNR107, F583_RS01000000127215 to F583_RS01000000127205; Micromonospor
MF730-N6, TR51_RS11025 to TR51_RS11045; Streptomyces purpeofuscus NRRL B-
IF39_RS0107420 to IF39_RS0107445; Streptomyces sp. XY431, ADK60_02665 to A
Streptomyces celluloflavas NRRL B-2493T, IH09_RS02990 to IH09_RS03015; Strepto
hybrid PKS/NRPS gene clusters present in the Micromo-
nospora sp. DSW705 genome shown in Table 5, only pks/
nrps-1 shows the same domain organization as the
rak cluster of Streptomyces sp. MWW064 (Fig. 3b).
Since this gene cluster encodes all the enzymes neces-
sary for assembling the rakicidin core structure, this
cluster was confirmed as a rak cluster (Table 6). Gene
organizations of the clusters for rakicidin D in Strep-
tomyces sp. MWW064 (Fig. 3a) and rakicidins A and
B in Micromonospora sp. DSW705 (Fig. 3b) are
ntadienoate (APDA) moieties in published genome sequences of
unds (b), BE-43547 (c), and others (d). NRPS and PKS genes for the synthesis
dark gray circles. Locus tag numbers of ORFs in this figure are as follows:
S0100600; Micromonospora sp. M42, MCBG_00130 to MCBG_00140;
rankia sp. ACN1ag, UK82_23055 to UK82_23085; Frankia sp. CpI1-P,
reptomyces davawensis JCM 4913, BN159_0686 to BN159_0681;
Streptomyces sp. CNH099, B121_RS0112700 to B121_RS0112685 and
tomyces durhamensis NRRL-ISP-5539T, IO33_RS0129710 to IO33_RS0129695;
omyces halstedii NRRL ISP-5068T, IG73_RS0111725 to IG73_RS0111755; Strep-
. NRRL S-1521, ADL30_05665 to ADL30_05635; Streptomyces sp. NTK973,
to H181_RS01105; Streptomyces sp. 769, GZL_RS00255 to GZL_RS00285;
. CNS639, G011_RS0119410 to G011_RS0119385; Salinispora arenicola
a sp. RV43, ABD52_RS02395 to ABD52_RS02415; Kitasatospora griseola
1817T, IF01_RS0123020 to IF01_RS0123045; Streptomyces sp. NRRL F-6131,
DK60_02635; Kitasatospora sp. MBT66, BI06_RS24475 to BI06_RS24440;
myces albus subsp. albus NRRL B-2513, ACZ90_11100 to ACZ90_11120

http://doi.org/10.1601/nm.6519
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essentially identical. Proposed biosynthetic pathway
for rakicidins in Micromonospora sp. DSW705 is illus-
trated in Fig. 3b.

Biosynthetic gene clusters for rakicidins and the related
compounds in other strains
Since the BLAST analysis shown in Table 6 suggests
that other Micromonospora strains such as M.
purpureochromogenes and Micromonospora sp. M42
may possess rak clusters, hybrid PKS/NRPS gene
clusters similar to rak clusters were searched for bac-
terial strains whose genome sequences and the ORF
information are available in the GenBank database.
We carried out BLAST search using RakEF sequence
of Micromonospora sp. DSW705 and Streptomyces sp.
MWW064 as the queries, and then analyzed each of
the gene clusters encoding RakEF orthologues using
antiSMASH [20] and manually if necessary. As shown
in Fig. 4, three Micromonospora, 19 Streptomyces,
three Frankia, one Nocardiopisis, one Salinispora, and
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cluster is likely responsible for microtermolide biosyn-
thesis. The remaining 14 strains in Fig. 4b lack a KR
domain in m2. In the clusters of eight among the 18
strains, NRPSs for m5 and m6 are encoded the
complementary strands, although the cluster of
Streptomyces durhamensis NRRL ISP-5539T was not
completely sequenced. Streptomyces sp. 769 does not
have the PKS for LM and m1. In the cluster of
Streptomyces sp. MspMP-M5, the PKS likely for LM
and m1 is encoded downstream of the PKS gene for
m4, although the gene cluster was not completely se-
quenced. The cluster of Nocardiposis sp. CNS639
likely lacks a LM, and some domains are distinct
from those of other strains.
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both tyrosine and APDA residues are not known,
products from these clusters may be structurally
novel. Two gene clusters of Streptomyces celluloflavas
NRRL B-2493T and Streptomyces albus subsp. albus
NRRL B-2513 showed the same domain organization
as rak clusters, but NRPS substrate prediction sug-
gests incorporation of L-glutamate and L-tryptophan/
β-hydroxy-tyrosine (bht) by m6, respectively. Because
rakicidin analogues containing these amino acids in
place of the asparagine residue have not been re-
ported, production of novel APDA-containing pep-
tides is expected in these strains.

Distribution of the gene clusters among genome-sequenced
strains
Whole genome sequencing has been performed for a large
number of actinomycete strains. At present, genome se-
quences of over 227 Streptomyces species, eight species and
six strains of Kitasatospora, eight species and seven strains
of Micromonospora, three Salinispora species, one species
and 97 strains of Frankia, and 18 species and 6 strains of
Nocardiopsis are available from the GenBank database.
Among them, 29 strains possess the rak-like gene clusters.
To investigate the correlation between evolution and sec-
ondary metabolite gene distribution, strains harboring the
rak-like gene clusters (shaded in black) were mapped onto
the phylogenetic tree of genome-sequenced strains based
on 16S rRNA gene sequences (Fig. 6). Micromonospora
strains are divided into two clades, one of which includes
three rakicidin-producers and one BE-43547-producer.
Strain MWW064 is the only Streptomyces that possesses
the rak cluster other than Micromonospora. In contrast,
vinylamycin-related gene clusters, shown in blue, are dis-
tributed in taxonomically diverse Streptomyces strains. It is
noteworthy that two Frankia strains have the same gene
cluster whereas only four compounds have been described
for Frankia species [22]. This genus should be more exam-
ined for secondary metabolite production. BE-43547 gene
clusters are present only in two strains of two genera be-
longing to the family Micromonosporaceae in this analysis.
But, since this compound was originally found from Strep-
tomyces [3], the gene cluster must also be present in the
genus Streptomyces. Presence of gene clusters for depsipep-
tides containing a tyrosine residue is limited to the genus
Kitasatospora and phylogenetically close Streptomyces
members. The S. celluloflavas NRRL B-2493T gene cluster
shows a similar domain organization to those of rak clus-
ters stated above, but this strain is not taxonomically close
to rakicidin producers.

Conclusions
The 6.8 Mb draft genome of Micromonospora sp.
DSW705, a producer of rakicidins A and B isolated from
deep seawater, has been deposited at GenBank/ENA/
DDBJ under the accession number BBVA00000000. This
strain contains seven PKS and NRPS gene clusters, from
which rakicidin-biosynthetic gene cluster was identified.
Gene clusters for the synthesis of rakicidins or the related
compounds are present in taxonomically diverse actino-
mycete strains, belonging to Micromonospora, Salinispora,
Frankia, Nocardiposis, Kitasatospora, and Streptomyces.
These findings provide useful information for discovering
new and diverse depsipeptides bearing the APDA unit,
and accelerate understanding of relationship between
taxonomy and secondary metabolite gene distribution,
and will possibly provide the insight regarding to the
evolution of secondary metabolite genes.
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