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Abstract

prevalence of vibrios in nontraditional irrigation waters.

Nontraditional irrigation water sources (e.g., recycled water, brackish water) may harbor human pathogens,
including Vibrio spp., that could be present in a viable-but-nonculturable (VBNC) state, stymieing current culture-
based detection methods. To overcome this challenge, we coupled 5-bromo-2"-deoxyuridine (BrdU) labeling,
enrichment techniques, and 16S rRNA sequencing to identify metabolically-active Vibrio spp. in nontraditional
irrigation water (recycled water, pond water, non-tidal freshwater, and tidal brackish water). Our coupled BrdU-
labeling and sequencing approach revealed the presence of metabolically-active Vibrio spp. at all sampling sites.
Whereas, the culture-based method only detected vibrios at three of the four sites. We observed the presence of V.
cholerae, V. vulnificus, and V. parahaemolyticus using both methods, while V. aesturianus and V. shilonii were
detected only through our labeling/sequencing approach. Multiple other pathogens of concern to human health
were also identified through our labeling/sequencing approach including P. shigelloides, B. cereus and E. cloacae.
Most importantly, 165 rRNA sequencing of BrdU-labeled samples resulted in Vibrio spp. detection even when our
culture-based methods resulted in negative detection. This suggests that our novel approach can effectively detect
metabolically-active Vibrio spp. that may have been present in a VBNC state, refining our understanding of the
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Introduction

As global freshwater resources are rapidly being de-
pleted—due to population growth, climate change, over
pumping of aquifers and other factors—states and na-
tions are relying more heavily on nontraditional irriga-
tion water sources (e.g., recycled water, brackish water)
to ensure agricultural water security and prevent food
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insecurity [10, 67]. In some semi-arid and arid regions of
the world, brackish water is the only remaining irrigation
water source available to farmers [29, 50]. The United
States Geological Survey (USGS) defines brackish waters
as having a dissolved-solids concentration between 1000
and 10,000 mg/L, which is greater than that of fresh-
water (>1000 mg/L), but less than that of seawater (35,
000 mg/L) [71]. In the semi-arid and arid regions of the
United States and other countries, brackish water use
has been largely restricted to relatively salt tolerant crops
including cotton, sugar beets, barley, wheat, safflower,
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sorghum, soybeans and tomatoes [29, 32, 57, 58, 64].
The effects of salt stress on plants when irrigated with
brackish water are well described in the literature [27,
70], and multiple mitigation strategies are being ex-
plored to enable these water sources to be suitable for ir-
rigation purposes [32, 57, 58, 64].

Besides salinity, brackish water sources are known
to harbor important human pathogens. Vibrio spp.,
for instance, are natural inhabitants of brackish estu-
aries such as the Chesapeake Bay, and include the
following frank pathogens: V. cholerae, V. parahaemo-
lyticus and V. vulnificus [14, 15, 81, 83]. Additionally,
Vibrio spp. have been recovered from surface waters,
such as rivers, creeks, and irrigation canals [37, 52,
65], as well as reclaimed water [25, 52, 53]. Human
Vibrio infections can occur among people consuming
raw or undercooked shellfish and among those work-
ing or recreating in contaminated waters [14, 15, 17,
56]. If Vibrio-contaminated water is also used to irri-
gate food crops that are eaten raw, this practice could
represent an additional exposure pathway for human
Vibrio infections [28, 76].

Hence, there is a need to further our understanding of
the prevalence of Vibrio spp. in nontraditional irrigation
water sources. Nevertheless, previous studies have pro-
vided evidence that Vibrio spp. can enter a viable-but-
non-culturable (VBNC) state [3, 13, 36, 49, 55], limiting
the ability of traditional culture methods to assess the
true prevalence of these microorganisms in water bodies.
On the other hand, the use of culture-independent,
DNA-based techniques such as PCR and sequencing
alone do not provide information on the viability of de-
tected vibrios in water sources, since DNA detected
through these methods can be derived from either dead
or live organisms [40, 43, 84].

This challenge can be addressed by using RNA-based
sequencing approaches instead of DNA-based methods,
particularly those targeting mRNA (which is only pro-
duced by metabolically-active cells), thus indicating the
presence of live cells [1]. However, use of environmental
RNA has received little attention mainly due to the ob-
servation that the persistence of RNA outside the organ-
ism is short-lived [60]. This notion has been challenged
by Cristescu [16], who provided evidence that RNA may
be abundantly and sufficiently present in the environ-
ment to evaluate the presence of live organisms [16].
Another major issue, however, is that high quality RNA
extraction is more challenging than DNA extraction due
to the rapid degradation of RNA which can occur be-
cause of inadequate sample processing and/or storage,
or contamination with RNA degrading enzymes like RN-
ases [73].

An alternative to RNA-based sequencing methods
for the detection of live or metabolically-active
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bacteria includes the use of DNA labels such as 5-
bromo-2’'deoxyuridine, (BrdU). BrdU is a synthetic
thymidine analog that incorporates into replicating
DNA; therefore, bacteria detected in BrdU-treated
samples are interpreted to be metabolically-active, vi-
able members of the tested bacterial community [77].
This BrdU labeling technique has been used to iden-
tify the metabolically-active fraction of bacteria
present in aquatic and soil environments [44, 75, 77].
Thus, the goal of this study was to evaluate whether
coupling 5-bromo-2’-deoxyuridine- (BrdU) labeling
with next-generation sequencing methods could en-
able the detection of VBNC vibrios, as well as the dif-
ferentiation between metabolically-active and dead
organisms in nontraditional irrigation water sources.

Materials and methods

Sampling sites and sample collection

Existing sampling sites characterized by CONSERVE: A
Center of Excellence at the Nexus of Sustainable Water
Reuse, Food and Health (www.conservewaterforfood.org)
were leveraged for this study: one tidal brackish water
river, one non-tidal freshwater creek, one agricultural
pond and one water reclamation facility. Preliminary bi-
weekly bacterial monitoring data from these sites for the
period of September 2016 to September 2017 (data not
shown) revealed the presence of Vibrio spp. Hence, 4L
grab samples from each site were subsequently collected
over the course of 5 months (May 2018 to September
2018) (total n =30 grab samples) to further characterize
the presence of Vibrio spp. via culture-dependent and
-independent methods.

Additionally, throughout our sampling period, the fol-
lowing water quality parameters were measured in tripli-
cate using a ProDSS digital sampling system (YSI,
Yellow Springs, OH, USA): water temperature (°C), con-
ductivity (SPC uS/cm), pH, dissolved oxygen (%), oxida-
tion/reduction potential (mV), turbidity (FNU), nitrate
(mg/L), and chloride (mg/L). Precipitation (inches) data
within the last 14 days were also obtained from Weather
Underground (https://www.wunderground.com/).

Sample processing

All samples were subjected to both BrdU labeling (1500
mL) and non-labeling (control subsamples, 1500 mL).
Our sample processing method is summarized in Sup-
plementary Figure 2.

Non-BrdU labeled water samples

Three 500 mL aliquots of each water sample were fil-
tered through a 0.2 uM filter and then subjected to one
of the following: 1) enrichment with alkaline peptone
water (APW) (30 mL); 2) enrichment with estuarine pep-
tone water (EPW) (30 mL); or 3) no enrichment (control
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sample). These samples were incubated for 24 h in the
dark at room temperature.

BrdU labeled water samples

Three separate 500 mL aliquots of each water sample
were subjected to BrdU treatment using our previously
published method [44]. Briefly, 100 uL. of 100 mM BrdU
was added per 500 mL of water and incubated for 24 h
in the dark at room temperature along with the non-
BrdU labeled samples. No additional nutrients or carbon
sources were added to the samples in order to maintain
the original water conditions as much as possible. After
incubation, each 500 mL BrdU-labeled water sample was
filtered through a 0.2 uM filter and subjected to one of
the following: 1) enrichment in APW; 2) enrichment in
EPW; or 3) no enrichment (control sample).

Sample incubation and cultivation

All enrichments (BrdU labeled or not) and non-enriched
control samples were incubated at 30 °C for 18-20h. A
loopful of growth from the enriched water samples
(non-BrdU treated) was then streaked onto thiosulfate-
citrate-bile salts-sucrose (TCBS) agar and incubated for
16-24h at 35°C. All colonies presenting as yellow (su-
crose positive) or green (sucrose negative) on TCBS
were selected and subjected to three rounds of streaking
for purification and isolation. DNA of resulting purified
isolates was then extracted using a heat shock method,
which involves isolates being exposed to 100 °C heat and
then transferred to ice.

Multiplex PCR detection of Vibrio genus

To detect five pathogenic Vibrio species, a multiplex
PCR amplification of the heat shocked isolates was per-
formed following a published protocol [38]. The ampli-
fied products were then viewed via gel electrophoresis.

DNA extraction

DNA extractions on all enriched and non-enriched
BrdU-labeled and non-labeled water samples were per-
formed using protocols previously published by our
group [11, 12]. Briefly, 1 mL of PBS was added to lysing
matrix B tubes (MP Biomedicals, Solon, OH, USA) con-
taining: 1) filters (non-enriched samples); or 2) cells that
were pelleted by centrifuging at 2450 x g for 20 min
(enriched samples). Then, enzymatic cocktails contain-
ing lysozyme, mutanolysin, proteinase K and lysostaphin
were added to the tubes and the tubes were incubated,
after which the cells were mechanically lysed at 6.0 m/s
for 40s using an MP Biomedical FastPrep 24 (Santa
Ana, CA, USA). The DNA was then purified using the
Qiagen QIAmp DNA mini kit (Germantown, MA, USA)
per the manufacturer’s protocol.
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Immunocapture of BrdU-treated samples

Immunocapture and isolation of BrdU-labeled were per-
formed using our previously published methods [44].
Briefly, sheared and denatured herring sperm DNA (HS
DNA) and monoclonal anti-BrdU (a-BrdU) antibody
was mixed in a 1:9 ratio and incubated for 1h at room
temperature. Then DNA extracted from BrdU samples
was denatured by heating for 5 mins at 100 °C and trans-
ferred onto ice for 5 mins. To this denatured sample
DNA, HS DNA/ (a-BrdU) antibody complex was added
and incubated for 1h in the dark at room temperature
with agitation to form DNA/HS DNA/ (a-BrdU) anti-
body complexes. Meanwhile, magnetic beads (Dyna-
beads, Dynal Inc., Invitrogen by Thermofisher Scientific)
coated with goat anti-mouse immunoglobulin G were
washed three times with 1mg/ml acetylated bovine
serum albumin (BSA) in phosphate-buffered saline (PBS)
using a magnetic particle concentrator. The washed
Dynabeads were then added to the DNA/HS DNA/ a-
BrdU antibody complexes and in- cubated for an add-
itional 1h in the dark at room temperature. After incu-
bation, the samples were washed in 0.5 ml PBS-BSA, and
the BrdU-containing DNA fraction was eluted by adding
1.7mM BrdU (in PBS-BSA) and incubating for 1h in
the dark at room temperature.

16S rRNA gene amplification and sequencing

Extracted DNA was then PCR amplified for the V3-V4
hypervariable region of the 16S rRNA gene using the
universal primers 319F (ACTCCTACGGGAGGCAG-
CAG) and 806R (GGACTACHVGGGTWTCTAAT),
and sequenced on an Illumina HiSeq2500 (Illumina, San
Diego, CA) using a method developed at the Institute
for Genome Sciences [21] and described previously [11,
12].

16S rRNA sequencing analysis

Following sequencing, 16S rRNA paired-end read pairs
were assembled using PANDAseq [45], de-multiplexed,
trimmed of artificial barcodes and primers, and assessed
for chimeras using UCHIME in de novo mode imple-
mented in Quantitative Insights Into Microbial Ecology
(QIIME; release v.1.9.1) [7]. Quality trimmed sequences
were then clustered de novo into Operational Taxo-
nomic Units (OTUs) and taxonomic assignments were
performed using VSEARCH [66] with a minimum confi-
dence threshold of 0.97. The SILVA 16S database [62] in
QIIME [7] was used for taxonomic assignments. Down-
stream data analysis and visualization were completed in
RStudio (v.1.1.423) using R packages: biomformat
(v.1.2.0) [48] vegan (v.2.4-5) [54], ggplot2 (v.3.1.0) [82],
phyloseq (v.1.19.1) [47], and metagenomeSeq (v.1.16.0)
[59]. When appropriate, data were normalized with
metagenomeSeq’s cumulative sum scaling (CSS) [59] to
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account for wuneven sampling depth. Prior to
normalization, alpha diversity was measured using both
the Observed richness metric and the Shannon diversity
index [69]. Bray-Curtis dissimilarity was used for calcu-
lating beta diversity and was compared using analysis of

similarities (ANOSIM) on normalized data (999
permutations).
Results

Water quality characteristics

Water quality characteristics of the four sampling sites
(non-tidal freshwater creek, reclaimed water, tidal brack-
ish river and freshwater pond) are shown in Table 1.
Overall, ambient temperatures, irrespective of sampling
site, increased from May to September 2018. Conductiv-
ity, nitrate and chloride levels were higher in the tidal
brackish creek compared to the other sampling sites,
and pH ranged from slightly acidic to slightly basic
across all water sample types. Dissolved oxygen was
higher in the freshwater pond compared to all other
sampling sites.

Culture data
After 3 rounds of isolation and purification, 87 sucrose-
positive (yellow) and 28 sucrose-negative (green) purified
colonies were obtained from Thiosulfate-citrate-bile
salts-sucrose (TCBS) agar resulting in a total of 115 pre-
sumptive Vibrio isolates from the four sites during the
entire sampling period. Of the 115 presumptive Vibrio
isolates, 29 (25.22%) isolates were confirmed via multi-
plex PCR as vibrios: 17 (14.8%) were confirmed as V.
cholerae; 11 (9.6%) were confirmed as V. parahaemolyti-
cus; and 1 (0.87%) was confirmed as V. vulnificus. The
V. cholerae isolates were predominantly obtained from
tidal brackish water (13 isolates), followed by non-tidal
freshwater (2 isolates) and reclaimed water (2 isolate). V.
parahaemolyticus isolates were also predominantly ob-
tained from tidal brackish water (9 isolates), and two iso-
lates were obtained from reclaimed water. The one V.
vulnificus isolate was recovered from reclaimed water.
Table 2 describes the observed prevalence of con-
firmed Vibrio spp. by sample type and enrichment
media. APW and EPW were similarly effective at detect-
ing Vibrio spp. in reclaimed water samples. However,
APW seemed to be more effective than EPW in the de-
tection of V. parahaemolyticus and V. cholerae in tidal
brackish water samples.

16S rRNA sequencing dataset

Extracted DNA from a total of 180 sub-samples as de-
scribed in Table 3 was PCR- amplified for the 16S rRNA
gene and sequenced using the Illumina HiSeq platform.
6,302,683 sequences were generated in total across all
samples, and clustered into 17,237 operational
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taxonomic units (OTUs). Across all samples, the mini-
mum number of reads was 357 and the maximum was
99,944, with an average number of sequences per sample
of 35,014.91 (+/- 14,897.3 SD). A Goods estimate cover-
age of 0.90 was calculated for all samples. Three control
samples that were not enriched (1 reclaimed water, 1
pond water and 1 non-tidal freshwater creek sample)
had a Good’s estimate coverage < 0.90 and were, there-
fore, removed to ensure appropriate read coverage
across all samples analyzed downstream (Supplementary
Figure S1). After data cleanup (removing OTUs with less
than 10 reads), the total number of sequences used in
downstream analyses was 6,020,192 from 177 samples
(n =47 pond water, n =47 reclaimed water, #n = 35 non-
tidal fresh water creek and »n =48 tidal brackish water
samples), clustered into 7298 OTUs with a minimum
number of 2901 reads and a maximum of 99,857 reads.

Alpha and beta diversity

Alpha diversity metrics (Shannon diversity) were calcu-
lated on both rarefied (after down-sampling each sample
to 2901) and non-rarefied data (data not shown) to avoid
sequence coverage issues. Since no differences were ob-
served between the rarefied and non-rarefied analysis,
we only presented alpha-diversity analysis performed on
the rarefied dataset in Fig. 1A. Irrespective of sampling
site/water type, the alpha diversity of BrdU-treated sam-
ples was significantly lower (p <0.001) when compared
to non-BrdU treated samples (Fig. 1A).

Principal coordinate analysis using Bray Curtis dis-
tances was implemented to quantify the inter-sample di-
versity (beta diversity). The analysis revealed that
bacterial profiles associated with BrdU-treated samples
were similar to the non-BrdU treated samples and
showed slight variation by treatment (ANOSIM, R value
=0.2241, p = 0.001) (Fig. 1B).

Taxonomic analysis

The top five bacterial phyla identified across all sampling
sites irrespective of treatments and enrichments were
Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria,
and Fusobacteria. The most predominant phyla with an
average relative abundance of 44.55% (+/- 0.21) was Pro-
teobacteria, followed by Firmicutes that had an average
relative abundance of 24.40% (+/- 0.26). Bacteroidetes,
Actinobacteria and Fusobacteria had an average relative
abundance of 15.58% (+/-0.18), 11.45% (+/-0.13) and
0.96% (+/- 0.04) respectively.

In total, 2205 (30%) OTUs were assigned to the genus
level of which only 351 (5%) could be identified to the
species level. The top 25 bacterial taxa across all sam-
pling sites, enrichments and treatments were Clostrid-
ium  bifermentans, unclassified  Aeromonadaceae,

Pseudomonas, Bacillus cereus, Flavobacterum
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Table 1 Water quality characteristic averages by sampling site, throughout the sampling period
Sampling sites  Sampling Precipitation =~ Water DO% Conductivity (SPC  pH ORP  Turbidity Nitrate Chloride
months (14d) temp. (C) uS/cm) mV (FNU) (mg/L) (mg/L)
Non-tidal May A 1.79 157 975 2114 728 1508 28 0.53 11.74
freshwater May B 465 175 935 1418 693 1445 135 11 136
Jun A 4.03 1645 928 20265 707 11425 111 093 11.24
Jun B 143 20.15 949 164 705 1051 53 0.885 1.34
Jul 0 2265 955 2047 729 8797 02 023 0.09
Aug 451 2215 93 162.8 722 802 547 0.38 0.64
Aug B NA NA NA NA NA  NA NA NA NA
Sep NA NA NA NA NA  NA NA NA NA
Reclaimed May A 1.11 18.2 120.5 808 795 2755 162 10.99 116.05
water May B 3.84 284 832 13 776 688 363 414 807.39
Jun A 253 19.8 148 874 717 1998 34 0.7 67.04
Jun B 1.01 23.75 2257 951 681 — 20.7 2.59 7846
1583
Jul 0.03 255 1283 1083 69 -1615 -18 033 47.08
Aug 812 23.85 1006 8215 6.85 24695 3.55 1 16.63
Aug B 0.98 2245 299 859 NA  NA 10.8 213 36.54
Sep 0 17.85 311 6965 7.52 2221 7.5 535 1703.39
Tidal brackish May A 0.89 20.338 589 198154 6.74 2755 286 12.89 8795.25
water May B 401 24139 315 24943 622 1847 367 65 85257
Jun A 7 20433 329 24389 648 189.7 819 6.5 1016.76
Jun B 2.36 27.37 27.1 12,1404 6.76 1562 432 22.34 4656.02
Jul 0.09 27.09 326 20524 6.77 257 -0315 34.03 9823.28
Aug 4.72 29.17 294 1,771 7 1673 512 30.58 6507.61
Aug B 0.64 2817 261 21921 709 1293 193 41.53 13,7976
Sep 4.08 23.26 239 209332 727 1505 226 2539 14,
127.69
Pond water May A 179 199 1119 1454 799 234 16 0.25 7.22
May B 4.65 229 4147 1252 689 11495 15 0.67 261
Jun A 4.03 186 4105 99.03 67 17785 116 1.03 3.99
Jun B 143 273 1118 104 713 1518 1117 043 0.73
Jul 0 27.95 1035 1339 724 1002 097 0.09 012
Aug 451 278 164 85625 792 1199 28 023 276
Aug B 048 2715 9.7 97.85 747 1361 46 0.22 0
Sep 3.71 23.1 103.8 1147 706 1106 =3.1 023 04

Table 2 Prevalence of V. parahaemolyticus, V. cholerae and V. vulnificus in nontraditional irrigation water samples processed using
culture methods with two different types of enrichment media

Number of Samples (%) Positive for Vibrio spp.

Sampling sites V. parahaemolyticus V. cholerae V. vulnificus

APW EPW APW EPW APW EPW
Reclaimed water (n = 8) 1 (12.5%) 1 (12.5%) 1 (12.5%) 1 (12.5%) 1 (12.5%) 0
Tidal brackish water (n=8) 3 (37.5%) 2 (25%) 6 (50%) 3 (37.5%) 0 0
Nontidal freshwater (n = 6) 0 0 0 1 (16.67%) 0 0
Pond water (n =8) 0 0 0 0 0 0

APW Alkaline peptone water enrichment. EPW Estuarine peptone water enrichment
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Table 3 Summary of total sub-samples tested using our coupled labeling and sequencing approach by water type, BrdU treatment

and enrichment method

Sampling site BrdU treatment No BrdU treatment Total
APW EPW No enrichment APW EPW No enrichment N
Pond water 8 8 8 8 8 8 48
Reclaimed water 8 8 8 8 8 8 48
Non-tidal freshwater 6 6 6 6 6 6 36
Tidal brackish water 8 8 8 8 8 8 48
Total (N) 180

APW Alkaline peptone water enrichment. EPW Estuarine peptone water enrichment

succinicans, Citrobacter, unclassified ACK-M1, Flavo-
bacterium, unclassified Actinomycetales, Lysinibacillus
boronitolerans, unclassified Enterobacteriaceae, Serratia,
unclassified Cytophagaceae, Rummeliibacillus, Clostrid-
ium metallolevans, Rhodobacter, unclassified C111, Exi-
guobacterium, Fluviicola, Novosphingobium, Plesiomonas
shigelloides, unclassified Chitinophagaceae, unclassified
Microbacteriaceae, unclassified C39 and Vibrio (Fig. 2).
Differential abundance analysis was performed to iden-
tify bacterial genera that were significantly different (p <
0.05) between enrichments (APW versus no enrichment
and EPW versus no enrichment) in all BrdU treated
samples (Fig. 3). Vibrio cholerae, Vibrio vulnificus, Clos-
tridium metallolevans, L. boronitolerans, F. succinicans,

Enterobacter cloacae, Cetobacterium somerae, B. cereus,
P. shigelloides and C. bifermentans were found at a sig-
nificantly higher abundance in BrdU-treated, non-
enriched samples. Additionally, all BrdU-treated
enriched (APW and EPW) samples were characterized
by a higher relative abundance of Candidatus Aquiluna
rubra (Actinobacteria).

Vibrio taxonomy

Irrespective of sampling site, treatments and enrich-
ments, we were able to observe vibrios in the 16S rRNA
sequencing data of all samples at a low relative abun-
dance (Fig. 4). Some of the species observed were V. cho-
lerae, V. vulnificus, V. parahaemolyticus, V. aestaurinus

p =0.001

Shannon

B. ANOSIM Test of Significance
Treatment R = 0.2241,p = 0.001
0.41

0.2

Axis.2 [9%]

o
2
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No BrdU

BrdU No BrdU
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Fig. 1 A Box plot of alpha diversity (Shannon Index) across all samples on rarefied data to minimum sampling depth. Alpha diversity of BrdU-
treated samples represents the diversity observed in the metabolically-active fraction of bacterial communities present in each sample. Pink
represents BrdU-treated samples and yellow represents non-BrdU treated samples. B PCoA analysis of Bray Curtis computed distances between
BrdU- and non-BrdU-treated water samples. Solid colored ellipses are drawn at 95% confidence intervals by treatment type of the water samples
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Fig. 2 Taxonomic profiles of the top 25 bacteria detected in pond water, tidal brackish water, reclaimed water and non-tidal freshwater derived
from 16S rRNA sequencing data. Pink represents BrdU-treated samples and yellow represents non-BrdU treated samples
J
and V. shilonii. Among the sampling sites, tidal brackish  shigelloides, Flavobacterium succinicans, Clostridium

water samples were characterized by the highest relative
abundance of vibrios, followed by reclaimed water sam-
ples. Additionally, in the non-enriched BrdU-treated
tidal brackish water samples, we observed Vibrio spp.,
indicating the detection of metabolically-active, viable
vibrios, including V. vulnificus, without the aid of en-
richment techniques. In non-tidal freshwater, reclaimed
water and pond water samples, a higher relative abun-
dance of metabolically-active vibrios coincided with the
use of enrichment techniques.

Additionally, we observed several bacterial taxa that
were correlated with the presence of Vibrio (Supplemen-
tary Fig. S3). The taxa observed when Vibrio were
present in the water samples were Uncl. Pseudomonas,
Uncl.  Microbacteriaceae, Uncl. c111, Plesiomonas

metallovens and Clostridium bifermentans.

Comparison between culture-based and 16S rRNA Vibrio
spp. detection

Table 4 provides a comparison of Vibrio spp. detection
using culture-based versus 16S rRNA sequencing ap-
proaches with and without BrdU labeling. Interestingly,
16S rRNA sequencing frequently detected V. aesturia-
nus, V. cholerae, V. parahaemolyticus, V. shilonii, and V.
vulnificus across multiple water sample types when our
culture-based approach was unable to detect these or-
ganisms (Table 4). Most importantly, 16S rRNA sequen-
cing of BrdU labeled samples resulted in Vibrio spp.
detection even when our culture-based methods resulted
in negative samples (Table 4). This suggests that our
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Table 4 Detection of Vibrio spp. in nontraditional irrigation water samples using culture-based methods versus 16S rRNA

sequencing with and without BrdU labeling

Sampling sites/ detection APW EPW No enrichment
methods Culture  165BrdU 165 Culture  165BrdU 165 165-BrdU 165
No BrdU No BrdU No BrdU
V. aesturianus
Reclaimed water (n=48) Absent 0.002 0.003 Absent 0 0.001 0.001 0.0003
Tidal brackish water (n = 48) Absent 0.1 13 Absent 0 03 0.02 0
Nontidal freshwater (n = 36) Absent 0 0 Absent 0.0008 0.0007 0.0007 0.003
Pond water (n =48) Absent 0 0 Absent 0.013 0 0 0
V. cholerae
Reclaimed water (n =48) Present 0.004 04 Present 0.005 0014 0.002 0.003
Tidal brackish water (n = 48) Present 0.5 19 Present 0.04 1 0.009 0.009
Nontidal freshwater (n = 36) Absent 0.004 0.004 Present 0.003 0.003 0.005 0.003
Pond water (n =48) Absent 0.004 0.002 Absent 0.006 0.005 0.002 0.003
V. parahaemolyticus
Reclaimed water (n =48) Present 0.01 0.01 Present 0.03 0.013 0.004 0.004
Tidal brackish water (n = 48) Present 024 04 Present 037 0.06 0.007 0.002
Nontidal freshwater (n = 36) Absent 0.021 0.007 Absent 0.024 0013 0.002 0.008
Pond water (n =48) Absent 0.03 0.0001 Absent 0.07 0.01 0.004 0.008
V. shilonii
Reclaimed water (n = 48) Absent 0 0.01 Absent 0 0 0 0
Tidal brackish water (n = 48) Absent 0.02 0.06 Absent 0 0.0025 0.001 0
Nontidal freshwater (n = 36) Absent 0.0004 0 Absent 0.0004 0.0006 0 0
Pond water (n =48) Absent 0 0 Absent 0 0 0 0
V. vulnificus
Reclaimed water (n =48) Present 0.007 0.07 Absent 0.01 0.004 0.009 0.002
Tidal brackish water (n =48) Absent 09 284 Absent 0.05 032 0.14 0.02
Nontidal freshwater (n = 36) Absent 0.005 0.002 Absent 0.02 0.006 0.002 0.009
Pond water (n = 48) Absent 0.015 0.006 Absent 0.03 0.01 0.007 0.013

coupled labeling and sequencing approach was able to
detect metabolically-active Vibrio spp. that may have
been present in a VBNC state.

Discussion

The nontraditional irrigation water sources tested in our
study harbored diverse bacterial communities (some of
which are of concern to public health), and hence, these
water sources would likely require treatment prior to
their use for food crop irrigation. Specifically, we were
able to detect the presence of Vibrio spp. across all sam-
pling sites. Our culture-based methods were only able to
detect Vibrio spp. at three of the sampling sites while
our coupled BrdU-labeling and 16S rRNA sequencing
approach revealed the presence of vibrios at all four
sampling sites (Table 4). Most interestingly, our novel
approach of coupling BrdU labeling with 16S rRNA se-
quencing was able to detect metabolically-active vibrios

in water samples that were negative based on our culture
results, suggesting that our approach can detect
metabolically-active Vibrio spp. that may be present in a
VBNC state. We also could detect metabolically-active
vibrios in non-enriched samples from all sampling sites,
indicating that our coupled method could be helpful in
quickly detecting VBNC vibrios without the use of a
time-consuming enrichment step.

The bacterial genus Vibrio is ubiquitous and widely
distributed in aquatic environments from brackish water
to deep seawater, worldwide [19]. These bacteria have
also been found in different surface waters [37, 52, 65]
and reclaimed water [25, 52, 53]. Most Vibrio-associated
illnesses have been associated with either foodborne in-
fections caused by the consumption of raw or under-
cooked seafood or wound infections acquired during
aquatic activities in coastal or estuarine waters [19]. Very
rarely, instances of Vibrio outbreaks associated with the
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consumption of raw vegetables have been reported [9,
28, 63, 76]. For instance Vibrio contamination of vegeta-
bles irrigated with partially-treated municipal wastewater
in Varanasi, India was reported [63]. Additionally, V.
cholerae O1 was detected in vegetables that were irri-
gated using wastewater and stabilization ponds in
Tanzania [28]. The prevalence of V. parahaemolyticus in
raw salad vegetables at the retail level was also observed
in Malaysia [76]. Nevertheless, to date no Vibrio out-
breaks in the U.S. have been associated with the con-
sumption of fresh produce.

Traditionally, pre-enrichment assays (alkaline peptone
water) prior to culturing on selective media (thiosulfate-
citrate-bile salts-sucrose agar) have been commonly used
to improve the detection of pathogenic vibrios from en-
vironmental sources [31]. However, these methods are
labor intensive, costly and fail to capture VBNC vibrios,
thereby resulting in an underestimation of the preva-
lence of vibrios in the environment. With advances in
molecular detection methods (e.g. multiplex Vibrio-spe-
cific PCRs) there has been an increased frequency in the
detection of vibrios [38]. Yet, viability of the detected or-
ganisms is questionable as molecular methods rely on
the detection of DNA that can persist in the environ-
ment long after bacteria have died. To address this issue,
previous studies have employed DNA intercalating dyes
such as ethidium monoazide (EMA) and propidium
monoazide (PMA) to estimate the total number of viable
cells in environmental samples [5, 6, 41]. Recently, Cao
et al. [6] was able to detect VBNC V. parahaemolyticus
in shrimp samples by utilizing PMA dyes [6]. Though
this intercalating dye looks promising and is being
widely used to detect metabolically-active bacteria, a re-
cent study by Li et al. [40] found that upon comparing
DNA-, PMA- and RNA-based 16S rRNA sequencing,
the PMA-based approaches tend to overestimate the live
or metabolically-active bacterial population when com-
pared to RNA-based methods.

Prior to the present study, there has been no study
using BrdU in tandem with sequencing to detect
metabolically-active environmental vibrios, but several
studies have used BrdU to detect other metabolically-
active bacteria in different environmental samples [44,
46, 75], and improve understanding of cell proliferation
with regard to adult neurogenesis [30, 74]. Additionally,
BrdU coupled with qPCR has been extensively used to
detect persistent fecal bacteria in sewage effluent [79],
psychrotolerant bacteria in polluted sea sediments [20]
and the impact of mycorrhizal fungi on bacterial com-
munities in soil [2]. Recently, our group coupled BrdU
with sequencing techniques to detect metabolically-
active bacterial communities in pond and reclaimed
water in the mid-Atlantic region [44]. In the present
study, our culture-based method was unable to detect
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Vibrio spp. in any pond water samples, while our 16S
rRNA sequencing data (generated from both BrdU
treated and non-treated samples) identified V. cholerae,
V. parahaemolyticus and V. vulnificus in enriched and
non-enriched pond samples (Table 4), indicating the de-
tection of likely VBNC vibrios that the culture-based
method could not detect. Also, in all non-enriched
BrdU-treated water samples we were able to detect Vib-
rio spp. (Table 4, Fig. 4), suggesting that our coupled
BrdU-labeling and sequencing approach could poten-
tially replace laborious enrichment approaches. More-
over, we were able to detect the presence of other
Vibrio’s including V. shilloni (coral pathogen) [39] and
V. aesturianus (oyster pathogen) [42] using our coupled
labeling and sequencing approach when our culture-
based approach was unable to detect these species
(Table 4).

Besides Vibrio spp., our findings also revealed the
presence of other human bacterial pathogens in BrdU-
treated enriched samples including C. bifermentans, B.
cereus, P. shigelloides, and E. cloacae (Fig. 2). C. bifer-
mentans is a Gram-positive bacillus known to occur in
water, soil, sewage [51], sludge and animal feces [80] and
is a rare human pathogen. Unlike other Clostridium spe-
cies like C. botulinum and C. perfringes (common causes
of foodborne illness) [22, 24], C. bifermentans infections
have been reported rarely (14 cases to date), none of
which have been associated with food-borne illness [26].

In contrast, B. cereus, another Gram-positive, aerobic-
to-facultative, spore-forming rod that is widespread in
nature, has been frequently isolated from soil and grow-
ing plants [4] and has been associated with food-
associated illness [8, 72]. Outbreaks of B. cereus have
been reported as a result of consumption of contami-
nated vegetable sprouts [61] and refried beans served at
a fast food restaurant chain in upstate New York [8]. In
addition, [78] characterized B. cereus isolates from nearly
56 samples of fresh vegetables (peppers, cucumbers, to-
matoes, carrots, zucchini, garlic and onions) and in re-
frigerated, minimally processed foods that included
these vegetables as the ingredients [78]. The presence of
these organisms in refrigerated, minimally processed
foods demonstrates their persistence through food pro-
cessing methods.

With regard to P. shigelloides, a total of 11 outbreaks
have been reported worldwide from 1961 to 2003, of
which four outbreaks occurred in the US [34]. Sources of
these outbreaks were mainly contaminated shellfish, fish,
meat products, and contaminated water sources (tap, well
and freshwater) [34]. The common environmental reser-
voirs for these bacteria include freshwater ecosystems and
estuaries [34]. Indirect contamination with P. shigelloides
after major natural aquatic disasters has also been re-
ported [68]. For instance, after the 2004 tsunami episode
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in India, P. shigelloides, along with pathogenic vibrios,
Aeromonas and Plesiomonas, were isolated from hand
pumps and wells in several communities [35].

E. cloacae, another pathogen detected using our
coupled BrdU labeling and sequencing method, has been
reported as an opportunistic and multi-drug resistant
bacterial pathogen involved in hospital associated out-
breaks between 1993 and 2003 in Europe [18]. E. cloacae
is ubiquitous in terrestrial and aquatic environments and
occurs as a commensal in the intestines of humans and
animals, making it a perfect candidate for transfer from
irrigated produce to humans. E. cloacae have been iso-
lated from ready-to-eat salads served in a primary school
in Valencia city [23] and from vegetables irrigated with
untreated wastewater in Morocco [33].

Strengths of this study include the sample size, diver-
sity of water sample types, thorough statistical analysis
of our data, our ability to have a head-to-head compari-
son between traditional culture-based methods and our
coupled labeling/sequencing method, and the ability to
ultimately differentiate between live/metabolically-active
and relic/dead bacterial communities using our novel
method. Additionally, we observed the co-occurrence of
other bacterial taxa when Vibrio were present in the
tested water samples, indicating that these taxa could
potentially serve as proxies for Vibrio presence in the
environment. This is an interesting area for future
research.

Like all 16S rRNA-based sequencing techniques, our
study limitations include PCR amplification biases, limited
ability to assign species-level classifications (limitations of
the currently-available databases), and limited ability to
distinguish various Vibrio species among the Vibrionaceae
family (due to similar 16S rRNA sequences among the dif-
ferent species). In terms of the BrdU labeling method, it is
possible that the 24 h incubation period that we utilized
(for both BrdU-labeled and non-labeled samples) may
have influenced the bacterial communities observed in
our study; however, any changes would have occurred in
both BrdU-labeled and non-labeled samples similarly.

Despite these limitations, our findings demonstrate
that coupling BrdU-labeling with 16S rRNA sequencing
enables the detection of metabolically-active Vibrio spp.
that may be present in water samples in a VBNC state.
In addition, we showed that our coupled labeling and se-
quencing approach can detect vibrios in non-enriched
BrdU-labeled samples, indicating that the use of this
method could replace laborious enrichment steps, short-
ening time to detection. Finally, our novel method could
be used in the future to quickly detect other food- and
waterborne pathogens, including Salmonella and Cam-
pylobacter, that may be present in a VBNC state and can
be difficult to detect using conventional culture-based
methods.
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