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Abstract 

Background:  Understanding environmental microbiomes and antibiotic resistance (AR) is hindered by over reliance 
on relative abundance data from next-generation sequencing. Relative data limits our ability to quantify changes in 
microbiomes and resistomes over space and time because sequencing depth is not considered and makes data less 
suitable for Quantitative Microbial Risk Assessments (QMRA), critical in quantifying environmental AR exposure and 
transmission risks.

Results:  Here we combine quantitative microbiome profiling (QMP; parallelization of amplicon sequencing and 16S 
rRNA qPCR to estimate cell counts) and absolute resistome profiling (based on high-throughput qPCR) to quantify 
AR along an anthropogenically impacted river. We show QMP overcomes biases caused by relative taxa abundance 
data and show the benefits of using unified Hill number diversities to describe environmental microbial communities. 
Our approach overcomes weaknesses in previous methods and shows Hill numbers are better for QMP in diversity 
characterisation.

Conclusions:  Methods here can be adapted for any microbiome and resistome research question, but especially 
providing more quantitative data for QMRA and other environmental applications.
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Background
Antibiotic resistance (AR) represents a global threat [1]. 
Between 2014 and 2016, more than one million peo-
ple died due to drug resistant pathogen infections and 
increasing death tolls are expected in the future [2]. AR 
pathogens not only spread through hospitals, but also 
enter the environment via insufficiently treated sewage 
[3, 4]. This is especially a problem in emerging coun-
tries. Increased economic wealth permits greater access 
to antibiotics while waste management often lags behind 

[5]. However, quantifying the extent of environmental 
AR over space and time is difficult because methods are 
not standardized, with researchers using different meas-
ures of AR (e.g. antibiotics, antibiotic resistant genes, 
ARGs; antibiotic resistant bacteria, ARBs; and mobile 
genetic elements, MGEs) across studies [6]. Ideally, 
bacterial hosts of ARGs should be tracked [7], but reli-
able molecular methods that couple bacteria species and 
ARG abundances (e.g. epicPCR [8], Hi-C [9]) are still in 
their infancy. Further, linking microbiome characteristics 
from DNA sequencing with quantitative ARG data is an 
unfulfilled aspiration for studying environmental AR [10, 
11]. This restricts our ability to perform realistic Quan-
titative Microbial Risk Assessments (QMRA) needed to 
quantify true risks of environment AR exposures [12, 13]. 
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Correlation-based methods can develop hypotheses to 
guide future experimental work but they are restricted 
due to technical biases introduced from DNA sequencing 
[7, 14, 15].

Next-generation sequencing (NGS) data are inherently 
compositional, providing relative abundance information 
at best [16]. It is impossible to measure absolute growths 
or declines of particular microorganisms solely with 

relative abundances as, for example, the increase of one 
taxon leads to the concurrent decrease of other(s) [17] 
(Fig. 1). Analysing relative abundance data using inappro-
priate statistical tools (such as parametric statistical tests 
e.g. ANOVA and measures of correlation e.g. Spearman’s 
rank correlation) can yield up to 100% false detection 
rates and their application contributes to a general lack of 
reproducibility among microbiome studies [18, 19].

Fig. 1  Schematic explaining relative (RMP) and quantitative (QMP) environmental microbiome profiling. Both, the RMP and QMP approach do 
not correct for biases introduced by sample collection, DNA extraction, PCR or library preparation. QMP approach based on [17]. While cell counts 
vary 100-fold between river water samples A and B, sequencing depth (= reads) per sample is independent of cell counts in next-generation 
sequencing. The RMP approach rarefies to lowest sequencing depth per sample, calculating relative abundance (%), which results in sample A 
being sequenced more intensively than sample B. The relative abundance profile poorly reflects the real environmental taxa distribution. The 
QMP approach corrects for sampling intensity by rarefying to the lowest sampling depth (= sequencing depth divided by cell counts) and then 
multiplies the rarefied taxon abundance with estimated cell counts to obtain absolute abundances (here per mL river water). As the blue taxon was 
equally abundant in A and B, the fact that it is included for RMP sample A can be considered an artefact of uneven sampling intensity
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While compositional approaches are available [16], 
the gold standard requires cell count estimates to cal-
culate absolute abundances [7, 19]. Such a quantitative 
approach can also correct sequencing data for sampling 
intensity to account for varied microbial loads across 
samples [17] (Fig. 1). Despite environmental studies rou-
tinely providing cell count estimates, these data are rarely 
used to calculate absolute microbial taxon abundances 
[20], with no studies correcting for sampling intensity 
[17]. Instead of relative microbiome profiling (RMP), 
we contend that environmental researchers should use 
quantitative microbiome profiling (QMP, [17]) to rep-
resent a more accurate picture of relationships between 
microbiomes, resistomes and metadata, guiding future 
QMRA applications.

The RMP approach rarefies to the lowest sequencing 
depth per sample, calculating relative abundance (%). 
In contrast, the QMP approach as introduced by [17] 
corrects for sampling intensity by rarefying to the low-
est sampling depth (= sequencing depth divided by cell 
counts) and then multiplies the rarefied taxon abundance 
with estimated cell counts to obtain absolute abundances 
(e.g. per mL surface water, Fig. 1).

Characterising and comparing anthropogenic impacts 
on environmental microbiomes (e.g. sewage entering riv-
ers, waste leaching, land runoff etc.) is generally hindered 

by the use of varying microbial diversity indices across 
studies [21–23]. For a more meaningful quantifica-
tion, ’diversity’ needs to be unambiguously defined and 
applied in microbiome research [24]. Common diver-
sity indices such as the Shannon and Simpson index do 
not measure diversity, but uncertainty and probability, 
respectively [23]. In contrast, Hill numbers (Fig. 2) pro-
vide a statistical framework that unifies and generalizes 
popular indices, and are intuitive and flexible enough to 
address a wide range of scientific questions [23, 25, 26]. 
Hill numbers were first proposed almost 50  years ago 
[26], but despite their continued appraisal [23–25], their 
use in microbiome research is rare [27, 28], especially 
for environmental microbiomes [29]. Hill numbers (qD, 
where superscript q describes the order of diversity) also 
have several additional advantages over other common 
diversity indices (Table 1).

Despite clear advantages in using Hill numbers [30] 
and the QMP approach [17] for improving reliability 
and comparability of environmental microbiomes, their 
application is rare [17, 27], and to our knowledge, has 
never been combined. Here we provide a workflow for 
combining QMP (based on parallelization of ampli-
con sequencing and 16S rRNA qPCR data to estimate 
cell counts) with absolute resistome profiling (based 
on high-throughput qPCR for almost 300 ARGs and 

Fig. 2  Schematic explaining the relationship between microbiome composition, diversity indices (richness, Shannon index and Simpson index), Hill 
numbers qD (a) and diversity profiles for four theoretical systems (b). Figure adapted from [30]. For sample 1 and sample 4, all amplicon sequence 
variants (ASVs) are evenly distributed, so Hill numbers of all orders of diversity (q) stay the same within sample 1 and sample 4. As sample 4 has half 
the amount of equally abundant ASVs to sample 1, Hill numbers also half, in contrast to the Shannon index or Simpson index. At q = 0, only richness 
is considered, ignoring relative abundance. Consequently, for q = 0, Hill numbers for samples 1, 2 and 3 are the same. For q > 0, Hill numbers 
decrease as the importance attributed to abundant ASVs increases. As sample 3 is dominated by 5 ASVs, Hill numbers 1D and 2D approximate 5. The 
diversity profile (b) shows the number of ASVs and evenness of the four theoretical systems. A flat profile indicates evenness
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MGEs) to monitor AR in an impacted river. Such abso-
lute microbiome profiling bypasses compositional effects 
in the reconstruction of microbiota interaction networks, 
allowing one to investigate correlations of taxa with 
ARGs and MGEs essential for QMRA. We also show 
the benefits of using the unified Hill number diversity 
framework to compare microbial community dynamics 
over space and time and confirm how misleading RMP 
approaches are for interpreting environmental microbi-
ome and resistome data.

Methods
Sample collection and DNA extraction
We collected river water samples (3 technical rep-
licates  x  1  L) from the Skudai catchment, Malaysia 
(288  km2, Additional file  1:  Fig.  S1) at eight sampling 
points (6 × main river and 2 × tributaries) during five 
sampling trips to capture seasonality (1 × November 
2017, 2 × March 2018 and 2 × July 2018). The catchment 
is located in a humid tropical climate and is character-
ised to equal parts by agriculture (of that, 80% oil palm, 
20% rubber plantations), forest and built-up areas [34, 
35]. In total, 38 samples (with each three technical repli-
cates) were collected with five biological replicates for the 
main Skudai river (S1, S2, S5, S6, S7, S8) and four biologi-
cal replicates for the tributaries Melana (M5) and Senai 
(Se1). Some data related to this analysis was included in 
a previous manuscript proposing surrogate markers for 
predicting AR ’hot spots’ in rivers where limited data are 
available (e.g., physico-chemical and ARG data from 30 
samples [36]). Here we focus on new methods of data 
analysis using some of the same data but used in a differ-
ent manner.

On-site, we monitored river water temperature and 
dissolved oxygen contents. Between 80–250 mL of river 
water was filtered onto 0.22  μm cellulose-nitrate filters 

to extract DNA with the FastDNA SPIN kit for soil (MP 
Biomedicals). DNA was cleaned with the QIAquick 
Nucleotide Removal Kit (Qiagen). DNA quality and 
quantity were measured with NanoDrop and the Qubit 
dsDNA HS assay (both Thermo Fisher Scientific), respec-
tively. The three technical replicates were pooled to have 
sufficient DNA for downstream processes. DNA was 
stored at − 20 °C.

16S rRNA qPCR to estimate cell concentration
16S rRNA qPCR assays were performed in triplicate with 
16S rRNA 1055f-1392r primers  [37] and SsoAdvanced 
Universal SYBR Green Supermix (Bio-Rad) on the Bio-
Rad CFX C1000 System (Bio-Rad) following thermo-
cycle program: (i) 2 min of initial denaturation at 98 °C, 
and 40 cycles of (ii) 5 s denaturation and 98 °C, and (iii) 
5 s annealing/extension at 60  °C [38]. Melt curve analy-
sis and gels were performed. DNA samples were diluted 
to a working solution of 5 ng/µL and an internal control 
DNA (gfp_qPCR_f: TCG​GTT​ATG​GTG​TTC​AAT​GC; 
gfp_qPCR_R: GAC​TTC​AGC​ACG​TGT​CTT​GTAG) was 
used as inhibition controls for the qPCR. Standard curves 
of each set of primers were constructed using plasmid 
clones of the target sequences of between 102 and 108 
copy numbers, used in parallel with each qPCR run. Cell 
concentration was estimated by dividing the 16S rRNA 
concentration by 4.1, the estimated average 16S rRNA 
GCN per bacterium [39]. We did not incorporate indi-
vidual 16S GCN adjustments on the sequencing reads 
[17, 40] as current correction approaches were found to 
introduce rather than reduce biases [41]. The resolution 
of Illumina MiSeq often only allows ASV characterisa-
tion to genus level, but already within species, 16S rRNA 
gene copy number (16S GCN) can vary widely (e.g. 6 to 
11 16S GCN for Escherichia coli [42]).

Table 1  Advantages of Hill numbers in comparison to standard diversity indices

1 Interpretation of the measure and its measurement unit is always the same in ’effective numbers of species’, i.e. the number of equally abundant 
species (or for DNA based approaches operational taxonomic unit (OTU)/amplicon sequence variant (ASV) [30]) required to generate an identical 
diversity [26]

2 Hill numbers double as the amount of equally common species doubles (called the ’doubling principle’), which allows more meaningful calcula‑
tions of statistical significant changes [23]

3 The sensitivity towards abundant and rare species can be modulated with a single parameter with Hill numbers (order of diversity – q)

4 Hill numbers can be computed taking into account phylogenetic or functional relationships among species (e.g. similar to Faith’s Phylogenetic 
Diversity [30])

5 Hill numbers were originally developed for abundance data, but can also be applied to incidence data [25]

6 Within the Hill framework, the diversity of a system can be partitioned, so α-diversity (average diversity of subsystems) multiplied by β-diversity 
(difference between subsystems) gives γ-diversity (entire diversity of the system) [31, 32]

7 Multiple (dis)similarity measurements derived from β-diversities can be calculated from Hill numbers with some being equal to other popular 
indices e.g. Unifrac [25]

8 The calculation of Hill numbers is straight-forward and can easily be implemented into existing bioinformatic pipelines [33]
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High‑throughput qPCR to quantify the resistome
High-throughput qPCR (HT-qPCR) of ARGs and 
MGEs was performed using SmartChip Real-Time PCR 
(Wafergen). A total of 296 primer sets (Additional file 1:  
Table S8) were used to detect 283 ARGs (52 β-lactams, 51 
non-specific efflux pumps, 46 MLSBs, 39 tetracyclines, 
36 aminoglycosides, 32 vancomycins, 11 others, 9 FCA, 
7 sulfonamides), 12 MGEs (8 transposases, 4 integrases) 
and one 16S rRNA gene as previously described [43, 44]. 
Amplification efficiency had to be within the range of 
90%-110% and was only confirmed when all three tech-
nical replicates were positive. Relative copy number of 
ARGs and MGEs were calculated and transformed to 
absolute copy numbers by multiplying with 16S rRNA 
concentration for each sample. ARG and MGE cell con-
centrations were estimated by dividing the 16S rRNA 
concentration by 4.1, the estimated average 16S rRNA 
GCN per bacterium [39].

16S rRNA sequencing and bioinformatics
The hypervariable V4 region 515F-806R [45] of the 
16S rRNA gene was sequenced on the Illumina MiSeq 
platform with V2 500 cycle chemistry at NU-OMICS, 
Northumbria University, UK. Sample preparation and 
sequencing followed the Schloss MiSeq Wet Lab SOP 
[46] with the only deviation of spiking a 4.5 pM library, 
as opposed to 4  pM. Sequencing included a positive 
control (mock community, ZymoBIOMICS Microbial 
Community DNA Standard, Zymo Research), negative 
control (water), and extraction control (extracted water). 
Raw sequences were processed with QIIME2 v.2019.4 
[47]. Reads were denoised into ASVs with DADA2 [48, 
49], assigning ASVs to genus level with the SILVA ref-
erence database (v 138) [50–52]. The V4 primer region 
515F-806R was extracted from the SILVA 138 SSU NR99 
dataset to retain more sequences within this region as 
opposed to using primer sequence to find and remove 
the corresponding region in the QIIME2 environment 
[53]. The SILVA 138 V4 classifier was trained with the 
machine learning software library scikit-learn v.0.20.0 
using Naïve Bayes methods (fit-classifier-naive-bayes 
[54]) through the feature-classifier plugin [55]. The tax-
onomy was assigned through the same plugin, using the 
sklearn-based taxonomy classifier (classify-sklearn [54]). 
Accounting for MiSeq bleed-through between runs [56], 
rare ASVs of less than 0.1% of the mean sample depth 
were removed. The taxonomy and ASV table biom file 
[49] were produced for downstream analysis in R [57] 
with the phyloseq (v 1.34.0) [58] and vegan (v 2.5–7) 
[59] package. ASVs not classified at phylum level were 
removed, resulting in a total of 2735 taxa for 38 samples 
with minimum 12,712 and maximum 83,570 reads.

Quantitative and relative microbiome profiling
For QMP, we rarefied samples to an equal sampling 
depth (ratio between sequencing depth and cell counts 
(Additional file  1:  Fig.  S2)) with the R function rarefy_
even_sampling_depth (seed 711) [17]. Reads were not 
corrected for individual 16S rRNA GCN. The resulting 
rarefied abundances were multiplied with the estimated 
cell concentration per sample to obtain absolute micro-
bial taxa abundance per mL of river water. For RMP, we 
rarefied sampled to an equal sequencing depth of 12,712 
(seed 711), resulting in relative microbial abundances.

Rank‑based RMP and QMP comparisons
We analysed ASV rank order changes between the RMP 
and QMP approach with the rank-biased overlap (RBO) 
measure and a genus co-occurrence network based on 
Spearman’s correlation. RBO is a similarity measure on 
ranked lists, developed to measure the expected overlap 
of indefinite rankings [60]. RBO does not require every 
item to appear in both rankings, is not tied to a particular 
prefix length and its top-weightedness can be adjusted. 
For the latter, parameter p determines the strength of the 
weighting to top ranks. Raising p increases the depth of 
comparison, e.g. for p = 0.9, p = 0.95 or p = 0.97, 85% of 
the RBO measure focus on the first ten, first 20 or first 50 
results, respectively [60]. We calculated RBO on the most 
abundant 100 ASVs with p = 0.95 to top-weigh the first 
20 results in R with the package gespeR (v 1.23.0) [61].

For the co-occurrence patterns, we first removed 
unclassified or ambiguously defined ASVs at genus level 
and then selected ASVs present in at least 85% of samples 
based on the QMP data (= 24 ASVs). The same 24 ASVs 
were also selected in the RMP data. We defined and visu-
alised taxon-taxon associations by Spearman’s correla-
tions between pairs of taxa with Benjamini–Hochberg 
multiple testing correction in R with the packages psych 
(v 2.1.3) [62] and corrplot (v 0.84) [63].

Resistome volcano plot
We assessed the difference in log10 ARG and MGE river 
water concentrations between up- and downstream (S1 
to S8) with the Welch’s t-test, applying Benjamini–Hoch-
berg P adjustment to correct for multiple testing. We 
plotted the log10 fold change against statistical signifi-
cance in a volcano plot with the R package EnhancedVol-
cano (v 1.8.0) [64].

Network analysis for microbiome and resistome 
correlations
We investigated microbiome and resistome co-occur-
rence by calculating all possible pairwise Spearman’s 
rank correlations among bacterial orders, ARGs and 
MGEs present in the river water samples (n = 38). Only 
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statistically robust correlations with Spearman’s ρ > 0.8 
and Benjamini–Hochberg multiple testing corrected 
P < 0.01 [65] were included in the network. Network 
analysis was performed in R with visualisation including 
topological property calculations in Gephi (v 0.9.2) [66].

Hill diversity analysis
Abundance-based Hill numbers and diversity profiles 
for RMP and QMP were calculated and plotted with the 
hilldiv R package (v 1.5.1) [33]. The Sørensen‐type over-
lap dissimilarity measure for q = 1 was used to quantify 
the effective average proportion of nonshared ASVs in 
the catchment and visualised in a NMDS plot. As the 
Hill number qD equation [23, 30] is not defined for q = 1, 
the R package hilldiv calculated qD for this case with 
q = 0.99999 (Eq. 1).

 qD Hill number, q Order of diversity, S Species richness, 
pi Proportional abundance of species i.

Statistical analysis and graphics
We performed all statistical analysis in R (v 4.0.5) [57]. 
We composed graphics using ggplot2 (v 3.3.3) [67] with 
finalisations in Inkscape (v 1.0.2) [68] except for where 
stated differently. The Skudai catchment map was com-
posed in ArcGIS (v 10.6.1) [36, 69]. To assess statistically 
significant difference in microbiomes and resistomes 
between upstream (S1) and downstream (S8), we tested 
for normality with the Shapiro–Wilk test, followed by 
comparisons with the Welch’s-test [70]. Effect size was 
measured with Cohen’s D with the R package effsize (v 
0.8.1) [71].

Results
Relative and absolute microbial taxa abundances
For this study, we collected river water samples in a 
Malaysian rural-to-urban catchment from eight sam-
pling points over five field trips in different seasons (total 
n = 38 with four to five biological replicates per site, see 
Additional file 1: Fig. S1). Our previous sub-study for this 
catchment found no large statistically significant seasonal 
effects for water quality and resistome data [36]. Conse-
quently, mean concentrations with standard deviations 
are reported per sampling point across seasons. We esti-
mated river water cell concentrations with 16S rRNA 
qPCR, correcting for multiple 16S rRNA gene copies 
per cell. In the catchment, cell counts varied more than 
100-fold across samples with mean upstream concentra-
tions of (9 ± 3) x 105 cells/mL (S1) and mean downstream 

(1)qD =

(

S
∑

i=1

p
q
i

)1/(1−q)

concentrations of (2 ± 1) x  107 cells/mL (S8) (Additional 
file 1: Fig. S2).

River water microbiomes were assessed by 16S rRNA 
sequencing with Illumina MiSeq, classifying ASVs 
to genus level. After data quality filtering, reads var-
ied from 12,712 to 83,570 (median 28,187, Additional 
file  1: Fig.  S2). Sampling depth (i.e., reads/cell count) 
was highest in upstream samples (S1; mean 3.4%), with 
lower sampling depths obtained elsewhere in the catch-
ment (mean 0.16–0.59%, Additional file 1: Fig. S2). The 
lower cell counts upstream resulted in S1 samples being 
21 × more intensely sampled in the microbiome analy-
sis than the most downstream site, S8 (Additional file 1: 
Fig. S2).

For RMP normalization, samples were rarefied to equal 
sequencing depth (i.e., number of reads per sample; here 
12,712 reads, Additional file  1: Fig.  S4). Despite known 
problems [72], the RMP approach remains the common 
practice in environmental microbiome research to cal-
culate relative abundances of taxa (Fig. 3) [73]. For QMP 
[17], samples were rarefied to equal sampling depth (here 
0.05%) and multiplied with the estimated cell counts per 
sample to obtain absolute abundance of taxa per mL river 
water (Fig.  3). In contrast to [17], individual 16S rRNA 
gene copy number (16S GCN) adjustment was not per-
formed because related methods are imprecise, introduc-
ing additional bias [41].

The most abundant ASVs (based on QMP, Additional 
file 1: Table S1) were Cloacibacterium, Acinetobacter, C39 
(genus level), and Comamonadaceae (family level). When 
comparing taxa changes across the catchment, the RMP 
barplot (Fig. 3a) might lead an inexperienced researcher 
to misleading conclusions. For example, the RMP bar-
plot might be read as Comamonadaceae decreasing as 
one moves downstream (S1 → S8). However, when one 
takes cell counts into consideration (Fig.  3b), Coma-
monadaceae concentrations actually increase from up- 
to downstream, which appears logical given progressive 
waste inputs along the river.

As relationships between microbiomes and metadata 
are often explored using non-parametric rank-based 
methods, we assessed whether the ASV rank order was 
conserved in the QMP vs RMP approaches. Out of the 
20 most abundant ASVs determined with QMP, 16 also 
were present in the top 20 ASVs from the RMP approach, 
but only three ASVs were at the same rank order in both 
listings (Additional file 1: Table S1). Assessing the simi-
larity of the rank order of the 100 most abundant ASVs 
with the rank-biased overlap for top-weightedness [60], 
we found that only 32% of the QMP and RMP results 
were in common (score 0.32 with p = 95, focussing 86% 
of the weight on top 20 ASVs), suggesting the two meth-
ods providing different pictures of the system—RMP only 
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provides composition, whereas QMP provides composi-
tion and abundance in tandem.

Correlation analyses are often used to infer taxon-
taxon interactions [14]. Constructing RMP and QMP 
genus co-occurrence networks (Fig.  4), we detected a 
much larger number of significant co-varying genus pairs 
in the QMP than RMP network (249 versus 116). The 
RMP network also was dominated by negative correla-
tions. None of the moderate to strong RMP correlations 
(P < 0.05, Spearman’s ρ − 0.5 to − 1) were detected in the 
QMP correlation matrix (Fig. 4).

Hill numbers for microbial diversity
Within the Hill framework, microbial diversity can 
be calculated for subsystems (α-diversity; the sam-
pling locations), the entire system (γ-diversity; the river 
catchment), and the difference between subsystems 
(β-diversity; between sampling points), all expressed 
using one unit, the effective number of ASVs [30]. The 
importance of ’richness’ (ASV count in a community) 
and ’evenness’ (equality of ASV frequency in a commu-
nity) to the overall diversity can be modulated with the 
parameter q [74]. For diversity of order zero (q = 0), the 
Hill number is a ‘richness’ value because it becomes 

insensitive to ASV frequency, which overweighs rare 
ASVs. At q = 1 (exponential of Shannon index), ASVs 
are weighed by their frequency without favouring rare 
or abundant ASVs. For q = 2 (inverse of Simpson index), 
abundant ASVs are overweighted [23]. While specific 
q values can be selected to calculate diversity, using 
α-diversities at q = 0, q = 1 and q = 2 together allows one 
to assess the degree of dominance in a community (Addi-
tional file  1: Fig.  S5). This information can be summa-
rized in a ’diversity profile’, a graph of diversity versus q, 
visualising the contributions of richness and evenness to 
a community’s diversity (Fig. 5). The richer a community 
(higher ASV count), the higher the graph starts, whereas 
the more uneven the community (few dominant ASVs), 
the steeper the slope of the graph [23].

Microbial diversities at each sampling point in the 
RMP diversity profile were closely aligned, with clearer 
differentiation seen for the QMP data (Fig.  5a, b). Both 
approaches showed microbial diversity was lower 
upstream (S1) than elsewhere in the catchment, but 
spatial differences were smaller using RMP (Additional 
file  1: Fig.  S5). This trend also was observed when cal-
culating the Shannon and Simpson index (Additional 
file 1: Fig. S4). Further, γ-diversity of the catchment was 

Fig. 3  Barplots showing the 20 most abundant ASVs grouped into families with remain pooled into ’Other’ for the relative (RMP; a) and quantitative 
(QMP; b) microbiome profiling approach, analysing river water samples from eight sampling points for two sampling campaigns (March and July 
2018, n = 16)). See Additional file 1: Fig. S3 for all 38 samples
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higher using the RMP versus the QMP approach, but the 
values for two approaches converged for q > 0. For RMP, 
γ-diversity in effective numbers of ASVs was 2721 (q = 0), 
338 (q = 1) and 96 (q = 2) and for QMP, the values were 
2428 (q = 0), 328 (q = 1) and 96 (q = 2).

Results from the RMP and QMP approach differed 
most in their diversity calculations for the least impacted 
upstream sampling point S1 (mean difference α at q = 0 
was 272 effective number of ASVs, Additional file  1: 
Fig.  S5) with the QMP approach better correcting for 
varying sampling depths (Additional file  1: Fig.  S2), 
thus avoiding ’over-sequencing’. For the QMP approach 

(Fig.  5b), the upstream microbial community (S1) was 
significantly less diverse for q = 0 and q = 1 than the 
farthest downstream (S8) (Welch’s t-test with P < 0.05 
and large Cohen’s D effect size < -0.8, Additional file  1: 
Table  S2). At S1, the microbial community also was 
more even than at any other sampling point downstream 
(Fig. 5b).

Comparing the α-diversities for the tributaries Se1 and 
M5 (Additional file 1: Fig. S5) further shows the benefit 
of reporting Hill numbers at varying q values. While the 
tributaries have similar diversities at q = 0 (richness), 
the diversities for q > 0 (taking frequency into account) 

Fig. 4  Co-occurrence patterns for ASVs detected in at least 85% of the samples based on relative (RMP) and quantitative (QMP) microbiome 
profiling. ASVs are labeled based on their genus name. Where different ASVs have the same genus name, numbers in parentheses differentiate 
those. Pairwise correlations between taxon abundances were calculated, and significant correlations (Benjamini–Hochberg adjusted test, P < 0.05) 
are represented by circles, the colour and size of each circle represent the correlation coefficient (Spearman’s ρ). f: family
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decrease more rapidly for the heavily polluted M5 [36], 
showing a more uneven microbial community in com-
parison to the less polluted Se1 (Fig. 5b, Additional file 1: 
Fig. S5).

Within the Hill framework, dissimilarity matrices are 
based on β-diversities [31, 32]. We used the Sørensen‐
type overlap dissimilarity measure for q = 1 to quantify 
the effective average proportion of nonshared ASVs in 
the catchment [33] (Fig. 5c). The NMDS plot shows the 
changing community structure as one moves from rural 
upstream (S1) to more urbanised downstream (Fig. 5c).

Characterising the river resistome
We quantified the river water resistome by applying 
high-throughput qPCR with 283 ARG, eight trans-
posase and four integron primers. For this paper, we 
define the sum of transposase genes plus integron genes 
as MGEs, although we recognise that this is only an esti-
mate based on the limited number of genes we quanti-
fied. In total, 211 ARGs (~ 75% of those assayed) were 
detected in the river catchment with 70 ARGs (25% of 
assay) shared between all river water samples (n = 38 
samples). All 12 MGEs were measured at least once in 
the sample with eight MGEs (75% of assay) shared across 
all samples (n = 38) (Additional file 1: Table S3). Detected 
ARGs encoded resistance to eight classes of antibiotics, 
with β-lactam resistance being the most common (45 
detected/52 in the assay) (Additional file 1: Table S3).

Summarizing ARGs and MGEs, their detected numbers 
(number of ARGs or MGEs), river water concentrations 
(log10 ARG or MGE copies/mL) and cell concentrations 
(ARG or MGE copies/cell) all significantly increased from 

upstream (S1) to downstream (S8) (Welch’s t-test with 
P < 0.05 and large Cohen’s D effect size < − 0.8, Additional 
file 1: Table S4) with the Melana tributary frequently hav-
ing the highest ARG and MGE concentrations (Addi-
tional file  1: Fig.  S6, Additional file  1: Table  S5). River 
water ARG concentrations increased more than two log10 
steps along the catchment with ARG copy numbers per 
cell increasing from 0.1 copies/cell upstream to 2.2 cop-
ies/cell downstream (Additional file 1: Fig. S6, Additional 
file 1: Table S5).

The most abundant ARGs in the catchment encoded 
resistance against sulphonamides (sul2), aminoglycosides 
(aadA1, aadA2,), β-lactams (blaOXA10) and for non-
specific efflux pumps (qacEdelta1, qacH) with their mean 
concentrations ranging between 1 × 107 to 2 × 106 gene 
copies/mL river water (Additional file 1: Table S6).

To assess the resistome changes along the river, we 
plotted ARG and MGE log10 fold river water concentra-
tion changes from up- to downstream (S1 to S8) against 
statistical significance in a volcano plot (Fig. 6). 146 ARG 
and MGE concentrations increased significantly at least 
tenfold between up- and downstream (Welch’s t-test, 
Benjamini–Hochberg adjusted P < 0.05). Four ARGs 
encoding for aminoglycoside, MLSB and tetracycline 
resistance and integron 3 increased more than four log10 
steps from up- to downstream (Fig. 6).

Network analysis of microbiomes and resistomes
Network analysis has been proposed to explore the asso-
ciations between microbiomes and resistomes, but to 
date, such networks have been either based on relative 
values [10] or semi-quantitative data (relative NGS data 

Fig. 5  Microbial diversity calculated within the Hill framework across the river catchment. Hill diversity plots represent α-diversities per sampling 
point based on the relative (a) and quantitative (b) microbiome profiling approach for varying q values. NMDS Sørensen‐type overlap dissimilarity 
plot (c) is based on β-diversity, calculated for the QMP data with q = 1. Data represented (n = 38) for the eight sampling points is based on five 
biological replicates for the main river (S1, S2, S5, S6, S7, S8) and on four biological replicates for the tributaries (Se1, M5)
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for microbiomes and absolute HT-qPCR for resistomes 
[11], see Fig.  7a). Combining QMP (rather than RMP) 
with HT-qPCR data allows one to more fully compose 
the quantitative networks (Fig. 7b), overcoming negative 
correlation biases and spurious associations reported for 
relative abundance co-occurrence networks [16]. Based 
on the absolute taxa abundance data, the QMP network 
had a higher number of nodes and edges with a higher 
average node connectivity (= average degree) than the 
RMP network (Fig. 7, Additional file 1: Table S7). While 
for the QMP network, 36 taxa at order level had strong 
correlations (Spearman’s ρ > 0.8 and P < 0.01) with at least 
three other nodes, this was only the case for 13 taxa in 
the RMP network (Fig. 7, Additional file 1: Table S7).

For the QMP network, the most connected ARGs, 
transposases, and integrons were blaOXA10 (152 
degrees), tnpA 02 (147 degrees) and clinical integron 1 
(clintl1; 146 degrees), respectively (Fig.  7b). The most 
correlating taxa belonged to the order of Burkholderiales 
(141 degrees), Flavobacteriales (135 degrees) and Campy-
lobacterales (134 degrees), indicating that these bacteria 
might be frequent hosts of ARGs, and/or that these bac-
teria came from a similar source to the ARGs and MGEs 
(Fig. 7b). While these correlations do not replace further 
monitoring, they help in hypothesis formulation, address-
ing better-grounded research questions [14].

Discussion
Our understanding of complex environmental micro-
biomes has been hindered by overly relying on relative 
abundance data and inconsistent definitions of diversity 
in describing microbial changes. This hampers the ability 
of environmental researchers to reliably link microbiome 
and resistome changes in the investigation of AR fate and 
spread, and other practical questions [7], such as provid-
ing quantitative data for QMRAs—a crucial knowledge 
gap for assessing environmental AR exposure risk.

To date, few papers have reported absolute taxa 
abundances [20, 40, 75] and, to our knowledge, only 
one human study [17] used rarefaction to make sam-
pling depths equal prior to multiplying the relative taxa 
abundances with cell concentrations. While this nor-
malization step removes sequencing information for 
’over-sequenced’ samples (here upstream S1), it is neces-
sary to allow a reliable comparison of microbial diversity, 
especially when cell counts vary widely across samples 
(here 100-fold). Only after sampling depth correction in 
QMP, did we find diversity to have increased significantly 
in the catchment from rural up- to urban downstream; 
this critical observation was not possible using the RMP 
approach.

Despite environmental QMP not addressing all known 
biases in microbiome research, it allows more accurate 

Fig. 6  Volcano plot displaying ARG and MGE log10 fold river water concentration changes between upstream (S1) and downstream (S8). Statistical 
significance calculated with the Welch’s t-test, applying Benjamini–Hochberg P adjustment. Fold change calculated by subtracting mean ARG or 
MGE river water concentration for S1 (n = 5) from S8 (n = 5)
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and easier absolute quantification of microbiota varia-
tion. In environmental studies, cell counts are routinely 
measured and QMP can be conducted at no extra cost, 
requiring little bioinformatic workflow adjustments. 
In this study, absolute taxa abundance data allowed to 
explore environmental microbiome and resistome inter-
actions, overcoming biases related to relative taxa abun-
dance data. Once bias is reduced, one then has more 
exact numerical data for QMRA calculations, which is 
essential for statistical and other analysis with parallel 
health and other end-point data within a QMRA.

Several methods are available to estimate cell counts, 
and one must consider the benefits and limitations of each 
option relative to absolute taxa abundance calculations. 
Here, we estimated cell counts by dividing 16S rRNA qPCR 
concentrations with the average 16S rRNA GCN per bac-
terium (4.1, [39]). This is a generalised approach because 
16S rRNA GCN can vary greatly across cells. Measuring 
total cells using flow cytometry is another possible option 
[17, 20]. Flow cytometry protocols are available for almost 
all environmental compartments (e.g. wastewater [76], bio-
films [77] or seawater [78]) to optimise cell detection.

Fig. 7  Network analysis based on relative (RMP; a) and quantitative (QMP; b) microbiome profiling, revealing co-occurrence patterns among 
ARGs (blue circles), MGEs (red and orange circles) and taxa at order level (green circles). A connection represents a strong (Spearman’s ρ > 0.8) and 
significant (P < 0.01, adjusted with Benjamini Hochberg) correlation. The size of each node is proportional to the number of connections (= degree). 
Only nodes with at least three other connections are shown. For more details, see Additional file 1: Table S7
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Conversely, parallel qPCR quantification of the same 
products as NGS is an option that might reduce bias 
from non-genetic methods (e.g., flow cytometry of cells 
vs. qPCR of 16S rRNA). Recent advances now also allow 
the quantification of viable cells with digital PCR [79, 80]. 
When using qPCR, the same primer region should be tar-
geted to estimate cell counts and assess the microbiome. 
Further qPCR bias could be reduced by diluting sample 
DNA instead of normalising to a DNA concentration. We 
recommend further research to compare cell concentra-
tion measurements for QMP.

Diversity has been defined in so many different ways 
that its ability to transfer accurate information on micro-
bial community changes, e.g. due to human impact, is 
compromised [24]. Jost and Chao (2020) introduced the 
analogy that diversity indices (e.g. Shannon or Simpson 
index) are connected to diversity in the same manner as 
a sphere’s diameter is connected to its volume. While the 
diameter is an index of the sphere’s volume, it is not the 
volume itself. They state that using the diameter instead 
of volume in engineering calculations would result in 
chaos, but this is what biologists are currently doing with 
diversity indices [74]. Shannon and Simpson index are 
useful diversity indices with an important role in ecology, 
but their values provide information on uncertainty and 
probability, respectively, rather than measuring diversity 
[23]. The Hill number framework provides a better and 
more unified approach to calculate and compare micro-
bial diversities across environmental compartments, 
especially where the parameter q can be used to modu-
late the sensitivity towards abundant versus rare ASVs.

Depending on the study purpose, scientists might 
choose to calculate Hill numbers for several q for an in-
depth diversity analysis (as performed here) or for one 
q value only. To define a core microbiome or when rare 
ASVs are considered untrustworthy due to technical bias 
(e.g. PCR or sequencing errors), q = 2 could be chosen to 
put more weight on abundant ASVs and results could be 
interpreted as effective number of dominant ASVs in the 
system [25, 30]. In contrast, when the rarest ASVs are as 
important as the most abundant ASVs, for example for 
conservation purposes, q = 0 could be chosen [30]. The 
recently published R hilldiv package [33] enables DNA-
based diversity calculations with Hill numbers.

In this study, we observed an increase in diversity and 
decrease in evenness along the river from a less pol-
luted upstream to a more polluted downstream. Envi-
ronmental AR increased along the river as indicated by 
the enrichment of ARGs and MGEs. Resistome concen-
trations in the heavily urbanized Melana tributary were 
often higher than in the river itself. The increase in diver-
sity, together with the increasing levels of cell counts, 
ARGs and MGEs in this rural-to-urban catchment are 

likely caused by insufficiently treated sewage entering the 
river (as previously shown in our sub-study of the same 
catchment [36] and in a different study covering the same 
area [81]). The most abundant ASVs for this catchment 
were Cloacibacterium, Acinetobacter, C39 (genus level) 
and Comamonadaceae (family level), also common in 
wastewater-impacted water bodies in China and India 
[82–84]. Comparing co-occurrence networks of absolute 
taxa with absolute ARG and MGE data allowed propos-
ing hypothesis of possible taxa harbouring AR to be fur-
ther investigated in experimental studies.

Conclusions
This study shows the straightforward and easy implemen-
tation of a quantitative microbial profiling approach and 
intuitive diversity characterisation with Hill numbers. 
We recommend our new combined approach to become 
the norm for future environmental microbiome (and 
resistome) research, especially to underpin improved 
QMRAs. Only when such methods are employed will 
environmental AR studies become more quantitative and 
truly comparable.
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