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Abstract
The relationships between biodiversity-ecosystem functioning (BEF) for microbial communities are poorly 
understood despite the important roles of microbes acting in natural ecosystems. Dilution-to-extinction (DTE), 
a method to manipulate microbial diversity, helps to fill the knowledge gap of microbial BEF relationships and 
has recently become more popular with the development of high-throughput sequencing techniques. However, 
the pattern of community assembly processes in DTE experiments is less explored and blocks our further 
understanding of BEF relationships in DTE studies. Here, a microcosm study and a meta-analysis of DTE studies 
were carried out to explore the dominant community assembly processes and their potential effect on exploring 
BEF relationships. While stochastic processes were dominant at low dilution levels due to the high number of rare 
species, the deterministic processes became stronger at a higher dilution level because the microbial copiotrophs 
were selected during the regrowth phase and rare species were lost. From the view of microbial functional 
performances, specialized functions, commonly carried by rare species, are more likely to be impaired in DTE 
experiments while the broad functions seem to be less impacted due to the good performance of copiotrophs. 
Our study indicated that shifts in the prokaryotic community and its assembly processes induced by dilutions 
result in more complex BEF relationships in DTE experiments. Specialized microbial functions could be better used 
for defining BEF. Our findings may be helpful for future studies to design, explore, and interpret microbial BEF 
relationships using DTE.
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Introduction
Microbes are key components of biodiversity and play 
important roles in ecosystem functioning [1, 2]. For a 
long time, the ecosystem functions of the microbial com-
munity were thought as highly redundant [3, 4] because 
the diversity of the microbial community is tremendous 
[5], and the functional genes are highly redundant [6]. 
Recently, a few studies have suggested that the loss of 
biodiversity in microbial communities also impairs the 
ecosystem functioning in different ecosystems [7–9]. In 
fact, the number of biodiversity-ecosystem functioning 
(BEF) studies in microbial communities is much fewer 
than the number of BEF studies in macroscopic com-
munities, which does not match the important roles of 
microbes in different ecosystems [10, 11].

In recent years, the development of high-throughput 
sequencing has enabled the quantification of microbial 
diversity and thus facilitated the exploration of microbial 
BEF [12]. Dilution-to-extinction (DTE) has mostly been 
used to manipulate microbial diversity to study micro-
bial BEF relationships in recent years [13, 14]. During 
DTE, the high dilution level could reduce the abundance 
of species and then remove rare species to obtain lower 
diversity [15]. DTE has become an important method 
to study microbial BEF relationships [10, 12, 16, 17] and 
provides evidences that rare species play vital roles in 
ecosystem functioning [15, 18, 19].

An important advancement of ecology in the last 
twenty years is the understanding of how stochastic pro-
cesses contribute to assembling communities [20, 21]. 
Now, it is well recognized that stochastic and determinis-
tic processes shape the community together, but their rel-
ative importance in community assembly may vary [21, 
22]. It is also interesting to know how community assem-
bly processes determine functional performance [22]. For 
example, many researchers believe that different com-
munity assembly processes will change BEF relationships 
[23–25]. A model study and an experimental study based 
on microbial communities showed that the dominance of 
stochastic processes would impair ecosystem functioning 
generating negative BEF relationships, and deterministic 
processes could result in positive BEF relationships [24, 
26]. Thus, understanding how microbial communities are 
assembled during DTE experiments is very important for 
in-depth analysis of the microbial BEF relationships.

In ecology, there is a fundamental life strategy-based 
spectrum running from r-strategists, which achieve their 
instinct growth rate (rmax) when resources are sufficient, 
to K-strategists, which maintain their population size 
near the carrying capacity (K) when resources are limited 
[27]. In microbial ecology, there is a framework similar to 
this spectrum. It is the copiotroph–oligotroph spectrum, 
where copiotrophs are thought to be fast-growing while 
oligotrophs are thought to grow slowly and efficiently 

[28]. The ribosomal RNA operon (rrn) copy number in 
the microbial genome is a candidate index for distin-
guishing copiotrophs and oligotrophs because of its good 
prediction of maximum growth rates [29–32]. In a pri-
mary succession of microbial community, copiotrophs, 
those with high rrn copy numbers, are dominant in early 
succession and later replaced by oligotrophs, those with 
low rrn copy numbers [33–35]. The abundance-weighted 
mean rrn copy number at the community level conse-
quently reduced with succession of microbial community 
[33, 35]. Therefore, the application of rrn copy number 
fitted the understanding of copiotroph-oligotroph spec-
trum and could help reveal processes behind community 
dynamics.

There are some suggestions that a higher dilution level 
might result in a higher ratio of copiotrophs [10, 17], 
because the available nutrient level is relatively high com-
pared to the low microbial abundance in diluted commu-
nities. However, this possibility has rarely been studied. 
This possibility should not be neglected as copiotrophs 
and oligotrophs have contrasting functional traits and 
performance [28], which may influence BEF relationships 
in DTE studies. On the one hand, the selection of copio-
trophs could contribute to the dominance of determinis-
tic processes at high dilution levels. On the other hand, 
the community assembly of rare species is driven mainly 
by stochastic processes [36, 37]; The stochastic processes 
could be weakened as the loss of rare species is an impor-
tant process occurring at higher dilutions in DTE experi-
ments [15]. In this study, we conducted a microcosm 
study using DTE and further verified our results using 
a meta-analysis of DTE studies. We aimed to determine 
how the selection of copiotrophs and loss of rare species 
in DTE contributed to the community assembly and how 
the shift in microbial community assembly processes 
would influence the BEF relationships.

Methods
A microcosm study
The original microbial communities were bacterio-
plankton communities from the surface of Lake Zixia 
(118.84424° E, 32.06042° N), Jiangsu Province, China. 
All microeukaryotes larger than 0.8  µm were excluded 
by subsequently filtering the water once through 5-µm 
and twice through 0.8-µm Isopore membrane filters 
(Millpore, Massachusetts, USA). The removed microeu-
karyotes include flagellates and ciliates, which feed on 
bacteria, and the existence of predators could cause the 
dominance of oligotrophs [38]. The filtered community 
was set as the initial community. Rest lake water was 
autoclaved (20  min at 121 ℃) and used as the medium 
for community regrowth. We prepared a 5-step dilution 
gradient with a dilution factor of 1:10, yielding 6 diversity 
levels with a sterile level as control. In brief, 200 mL of 
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the initial community was transferred into a 3-L conical 
flask with a 1.8 L final of autoclaved lake water and the 
bottles were covered by semi-permeable membrane to 
prevent air contaminations. This procedure was repeated 
four times to get the highest dilution of 10− 5. After dilu-
tion, all the bottles were placed in a dark indoor environ-
ment with a room temperature of about 23℃. We shook 
the bottles twice a day for the oxygen supply and then 
randomly swapped the positions of the different bottles. 
We sampled each bottle for cell density every two days. 
After 8 days of inoculation, we collected three replicates 
for each dilution level. Approximately 600 ml of the col-
lected water was filtered through 0.2-µm Isopore mem-
brane filters (Millipore, Billerica, MA, USA) and later 
stored at − 20  °C until DNA extraction and subsequent 
sequencing. These steps including dilution and sampling 
were conducted in a Biological Safety Cabin to avoid 
microbial contamination from the air.

Analysis of 16S rRNA gene sequencing data
The filters were sheared and microbial DNA was 
extracted using the FastDNA Spin Kit for Soil (Mo Bio 
Laboratories, Carlsbad, CA, USA) according to the 
manufacturer’s protocols. The primer 515  F/806R for 
16S rRNA gene was selected for polymerase chain reac-
tion (PCR) amplification. Library preparation and DNA 
sequencing on the Illumina MiSeq platform (Illumina, 
Inc., San Diego, CA, USA) were performed at Shang-
hai BIOZERON Biotechnology Co., Ltd. (Shanghai, 
China). The raw sequencing data are available in the 
Sequence Read Archive through the project accession 
PRJNA864105.

We merged the sequences and stripped the primers 
using USEARCH (Edgar, 2010). Clustered reads were 
classified into operational taxonomy units (OTUs) at 
a 97% similarity level using the UPARSE algorithm [39] 
with the option of excluding global singletons from the 
clustering step. The chimera was also removed during the 
cluster operation. The taxonomic assignment of the rep-
resentative sequences of OTUs was analyzed by SINTAX 
algorithm [40] against the Ribosomal Database Project 
training set [41] with an 80% confidence score. Those 
OTUs failing to be classified as Bacteria or Archaea were 
also removed for subsequent analyses.

Finally, 699,963 reads of 16S rRNA gene fragments 
were obtained and could be clustered into 805 prokary-
otic OTUs. The OTU abundance tables were rarefied 
by the lowest number of OTUs (29,915 reads) using the 
package ‘vegan’ [42] on R Statistical Software (v4.0.5) 
[43]. Then, the rrn copy number for each OTU was pre-
dicted and the abundance was corrected to obtain the 
corrected cell number following the same strategy as 
Wu et al. [44]. First, the rrn copy number for each OTU 
was estimated based on its taxonomy using the rrnDB 

database [45]. If the child-taxon of an OTU was identified 
in the rrnDB database, the average rrn copy number of 
this child-taxon was applied; otherwise, the average rrn 
copy number of its parent-taxon was applied. Next, the 
abundance in OTU table was corrected, divided by the 
responding rrn copy number of OTUs to represent the 
cell abundance. The mean rrn copy number of each com-
munity was calculated using the abundance-weighted 
average method.

Diversity metrics and community attributes
Species richness (also called as observed OTU number) 
and the Shannon index were calculated using the package 
‘vegan’ [42] on R Statistical Software (v4.0.5) [43] based 
on the OTU abundance table after the correction of rrn 
copy number.

The modified stochasticity (MST) was calculated to 
present the relative importance of stochastic processes 
vs. deterministic processes [46]. MST reflects the con-
tribution of stochastic processes based on relative dif-
ferences between the observed situation and the null 
expectation and therefore can better quantitatively mea-
sure the stochasticity in community assembly [46]. The 
MST index defines 0.5 as the threshold to determine 
whether the community assembly is more deterministic 
(< 0.5) or more stochastic (> 0.5). Here, the unweighted 
distance based on Jaccard dissimilarity was used, which 
gives the same weight to rare species and abundant spe-
cies. The calculation of MST was achieved using the 
package ‘NST’ [46] on R Statistical Software (v4.0.5) [43].

As rare species are more vulnerable to DTE [15], we 
divided different species in each community into rare 
species (relative abundance < 0.1% locally) and abundant 
species (relative abundance > 1% locally) [47, 48]. We also 
calculated the diversity metric and MST of rare species 
and abundant species. The MST difference between rare 
species and abundant species was tested using paired 
t-test.

The BEF relationship in microcosm study
In the microcosm study, we used Biolog EcoPlate™ assays 
(Biolog Inc., Hayward, CA, USA) to infer carbon utiliza-
tion ability as an ecosystem function [10, 49]. EcoPlates 
contains 31 different organic carbon substrates, and a 
water control in triplicate. Once the community could 
utilize the carbon substrate, the color of the well turned 
into purple and could be detected in the optical density 
value using a plate reader. Every 24 h, the optical density 
in each well was measured at 590  nm using the Syner-
gyTM 2 plate reader (BioTek Instruments, Inc., Winooski, 
VT, USA) for 5 days. We calculated the blank-corrected 
median absorbance of each substrate and further the 
average well color development (AWCD) [13]. We also 
selected the time points when the AWCD was closest to 
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0.5, as suggested [13], to calculate the functional diver-
sity. We also used the AWCD corrected by initial cell 
density on the third day to represent the uptake rates.

Collecting studies for meta-analysis
The keywords used in the Web of Science search were as 
follows: TS = (diversity AND dilution) AND SU = micro-
biology. We collected 1,566 papers on March 10, 2022 
(last update time). Combined with the paper referred by 
Roger et al. (2016) [10] and other literature cited in these 
papers, we finally found 127 papers describing the func-
tioning or/and community’s structure in DTE experi-
ments and the number of publications each year showing 
an increasing trend over time (Figure S1).

Articles satisfying the following criteria were used for 
community analyses: (1) the community structure was 
measured using the 16S rRNA gene amplicon sequenc-
ing method; (2) the number of dilution levels was no 
less than 3; (3) the raw sequencing data of sequencing 
could be found in Sequences Read Achieve database or 
other websites and their treatment information for each 
sequencing file could be clearly tracked based on avail-
able information. We totally collected 26 articles with 
1,529 communities totally. The final studies used and 
their related information can be found in Table S1. The 
analysis of raw sequencing followed the same flow as the 
microcosm study. Since different primers were used for 
each study, we analyzed the data from different studies 
separately and rarefied OTU tables to their own mini-
mum sequencing depth. We defined experiments with 
different community source, different culture condition 
and different regrowth time as distinguished experi-
ments. We finally gained 82 experiments.

Effect size calculation and meta-analysis
We calculated Pearson’s coefficient of correlation 
between each pair of dilution levels, species richness, the 
Shannon index, MST, and mean rrn copy number. We 
transformed Pearson’s coefficient of correlation (r) into a 
normalized effect size using Fisher’s z transformation.

	
z = 0.5 ∗ ln

(
1 + r

1 − r

)
� (1)

	
V ar (z) =

1
n − 3

� (2)

Here, ‘n’ represents the number of observations.
All meta-analyses were performed using the package 

‘metafor’ [50]. A variance-weighted mixed-model (meta 
regression) was applied to estimate the mean effect size 
(z++) using restricted maximum likelihood. We evaluated 
the heterogeneity of effect sizes among different experi-
ments with the Q-statistic to determine whether the 

models could explain a significant amount of variation. 
Total heterogeneity (Qt) could be divided into the vari-
ance explained by the moderators (Qm, how much the 
moderator explains heterogeneity among different obser-
vations) and the residual error variance (Qe, the residual 
of heterogeneity remaining to be answered). We found 
strong heterogeneity in the meta-analysis when different 
correlations were calculated (Table S2). After introducing 
moderators, culture habitat and the duration of regrowth 
explained a proportion of the heterogeneity (Table S3).

Collected BEF relationships using DTE
We collected 68 studies using DTE to study microbial 
BEF relationships. We used the function categories sim-
ilar to the categories given by Roger et al. [10] and dis-
carded rest ecosystem functions failed to classified into 
these categories. In detail, ecosystem functions could 
be divided into bacterial activity, degradation of carbon 
substrates, invasion resistance, stability (resistance, resil-
ience, and temporal stability), plant productivity promo-
tion, nitrogen cycling and other elementary cycling. To 
further understand the BEF relationships, we studied the 
BEF for broad functions and specialized functions. Here, 
broad functions are those functions that most microor-
ganisms could perform while the specialized functions 
could be only carried out by specific functional groups 
[9, 51]. Bacterial activity and the degradation of labile 
carbon were defined as broad functions. Degradation of 
inert and xenobiotic carbon, nitrogen cycling and other 
elementary cycling were defined as specialized functions.

All the plots were visualized on R Statistical Software 
(v4.0.5) [43] by using packages ‘ggplot2’ [52] and ‘ggpubr’ 
[53].

Results
Microcosm study
Dilution-to-extinction successfully reduced species rich-
ness (Pearson’s r = − 0.931, P < 0.001) and the Shannon 
index (Pearson’s r = − 0.898, P < 0.001) in the microcosm 
study. Rare species were reduced faster than abundant 
species (Figure S2), showing that rare species were more 
vulnerable to DTE. The relative abundances of Betapro-
teobacteria and Gammaproteobacteria increased with 
increasing dilution level (Betaproteobacteria: Pearson’s 
r = 0.609, P = 0.007; Gammaproteobacteria: Pearson’s 
r = 0.721, P < 0.001), while other abundant phyla/classes 
decreased with increasing dilution level (Figure S3).

MST decreased with increasing dilution level, suggest-
ing stronger deterministic processes at a higher dilution 
level (Pearson’s r = −0.933, P < 0.001; Fig. 1a). We observed 
a negative correlation between MST and species rich-
ness (Pearson’s r = 0.941, P < 0.001; Fig. 1b) and the Shan-
non index (Pearson’s r = 0.933, P < 0.001; Fig. 1c). We also 
observed a higher MST in rare species than in abundant 
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species (Figure S4), indicating that rare species commu-
nity assembly were more driven by stochastic processes 
than abundant species.

We predicted the rrn copy number for each OTU to 
classify different OTUs into copiotrophs and oligotrophs. 
The species with higher rrn copy numbers tended to be 
more frequent in diluted communities (generalized lin-
ear model: slope = 0.041, P < 0.001), so fast growth rates 
might support persistence in diluted communities after 
regrowth. At the community level, the mean rrn copy 
number increased with a higher dilution level (Pearson’s 
r = 0.954, P < 0.001; Fig.  2a) and decreased with higher 
species richness (Pearson’s = − 0.837, P < 0.001; Fig.  2b) 
and the Shannon index (Pearson’s r = − 0.896, P < 0.001; 
Fig. 2c). Thus, MST decreased with higher mean rrn copy 
number (Pearson’s r = − 0.792, P < 0.001; Figure S5). These 

results suggested that the copiotrophs were selected 
under higher dilution levels.

We used Biolog EcoPlate™ to measure the carbon 
utilization ability as an ecosystem function. The func-
tional diversity (the Shannon index of utilized carbon) 
and AWCD were used here. Functional diversity was 
not affected by the loss of species richness (Pearson’s 
r = 0.151, P = 0.260; Fig.  3a) or the Shannon index (Pear-
son’s r = 0.054, P = 0.831; Fig.  3b). When considering the 
AWCD corrected by cell density, we found a positive 
relationship between ecosystem functions and species 
richness (Pearson’s r = 0.610, P = 0.007; Fig. 3c) as well as 
the Shannon index (Pearson’s r = 0.522, P = 0.026; Fig. 3d).

Meta-analysis
We collected 82 DTE experiments from 26 different arti-
cles with prokaryotic composition information using the 

Fig. 1  The relationship between modified stochasticity ratio (MST) and (a) dilution level, (b) species richness, and (c) the Shannon index in the microcosm 
study. MST represents the relative importance of stochastic process in community assembly. MST smaller than 0.5 represents stronger deterministic 
processes than stochastic processes and MST larger than 0.5 represents stronger stochastic processes than deterministic processes. Dilution level equals 
to the logarithmically transformed dilution factor based on 10. Species richness is logarithmically transformed based on 10 before the calculation of Pear-
son’s correlation. The lines show the result of linear regression and the shaded areas represent 95% confidence intervals. Here, r represents the Pearson’s 
correlation and *** represents P < 0.001.
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high-throughput amplicon sequencing method (Table 
S1). In most DTE experiments, species richness (z++ = − 
1.29, P < 0.001; Figure S6a) and the Shannon index (z++ 
= − 1.24, P < 0.001; Figure S6b) decreased with higher 
dilution level. The DTE experiments that species rich-
ness didn’t significantly decrease with dilution levels were 
removed in later analysis because they were likely to be 
contaminated or the diversity of the initial microbial 
community was too small to get a good dilution result. 
Finally, 70 DTE experiments remained for later analyses.

We examined the changes in the relative abundance of 
each phylum induced by dilution. The dominant phyla/
classes were different in each habitat. We focused on soil 
ecosystems that had the largest experimental numbers in 
the meta-analysis. We found that the relative abundance 
of Betaproteobacteria significantly increased with dilu-
tion levels among different studies (z++ = 0.357, P < 0.001; 
Table S2).

MST decreased toward higher dilution levels (z++ = − 
1.28, P < 0.001; Fig. 4a), which resulted in a positive rela-
tionship between MST and species richness (z++ = 1.47, 
P < 0.001; Fig. 4b) as well as the Shannon index (z++ = − 
1.23, P < 0.001; Fig. 4c). It indicates stronger deterministic 
processes toward higher dilution levels. The communi-
ties of rare species had significantly higher MST than the 
communities of abundant species (Figure S7). Commu-
nity assembly of rare species are more driven by stochas-
tic processes than that of abundant species.

The OTUs with higher rrn copy numbers had signifi-
cantly higher frequency of occurrence in diluted com-
munities in 63.8% of the DTE experiments (Table S3). 
At the community level, the dilution level increased the 
mean rrn copy number (z++ = 0.559, P < 0.001; Fig.  5a), 
and the mean rrn copy number was negatively correlated 
with species richness (z++ = − 0.618, P < 0.001; Fig.  5b) 
and the Shannon index (z++ = − 0.562, P < 0.001; Fig. 5c). 
The MST within the dilution level was also negatively 

Fig. 2  The relationship between mean rrn copy number and (a) dilution level, (b) species richness, and (c) Shannon index in the microcosm study. Mean 
rrn copy number is the abundance-weighted mean rRNA operon copy number. Dilution level equals to the logarithmically transformed dilution factor 
based on 10. Species richness is logarithmically transformed based on 10. The lines show the result of linear regression and the shaded areas represent 
95% confidence intervals. Here, r represents the Pearson’s correlation and *** represents P < 0.001
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correlated with the mean rrn copy number (z++ = − 0.552, 
P < 0.001; Figure S8).

To further explore the BEF relationships, we also col-
lected 66 studies using DTE to study BEF relationships. 
Going through different BEF relationships found in dif-
ferent studies, we found that 37.9%, 10.6% and 3.0% of 
studies reported positive, neutral and negative BEF rela-
tionships respectively (Fig.  6a). Approximately 48.5% 
of studies reported complex BEF relationships, which 
contain more than one kind of BEF relationships (posi-
tive, negative or neutral) when different ecosystem func-
tions or the same ecosystem functions under different 
conditions were studied (Table S6). When we classified 
functions into broad and specialized functions, the BEF 
relationships showed a contrasting pattern (Fig.  6b). 
Broad functions showed higher ratio of neutral and 
lower ratio of positive BEF relationships than specialized 
functions.

Discussion
DTE, as an important method to manipulate microbial 
diversity, is widely used to explore BEF relationships 
in different ecosystems and significantly promotes our 
understanding of the importance of microbial diversity 
[10, 17, 24]. However, most studies focused on taxonomic 
diversity changes caused by DTE. Here, we observed 
the selection of copiotrophs and the reduction of rare 
species as well as enhanced deterministic processes in 
microbial community assembly towards higher dilutions 
using microcosm study and meta-analysis. These change 
in community structure may result in more complex 
BEF relationships in microbial communities when broad 
microbial functions are considered. We also found more 
neutral and less positive BEF relationships in broad func-
tions than specialized functions in DTE studies.

Fig. 3  The relationships between taxonomic diversity and ecosystem functions in the microcosm study. The relationship between functional diversity 
and (a) species richness and (b) Shannon index. The functional diversity represents the diversity of carbon substrate utilization using Biolog Ecoplate™ 
when the average well color development is closest to 0.5. The relationship between average well color development (AWCD) and (c) species richness as 
well as (d) Shannon index. The AWCD is measured three days’ culture and further corrected by initial cell density. Richness is logarithmically transformed 
based on 10. The lines show the result of linear regression and the shaded areas represent 95% confidence intervals. r represents the Pearson’s correlation 
and *** represents P < 0.001, ** represents P < 0. 01, and * represents P < 0.05.
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Selection of copiotrophs is responsible for stronger 
deterministic processes at a higher dilution level
Deterministic processes have been demonstrated to 
become stronger at a higher dilution level because of 
reduced microbial diversity [19, 24]. However, the com-
munities with low diversity are not necessarily dominated 
by deterministic processes, as some studies found stron-
ger stochastic processes than deterministic processes in 
communities with low diversity rather communities with 
high diversity [48, 54]. We highlight the contributions of 
loss of rare species and selection of copiotrophs to com-
munity assembly. Community assembly of rare species is 
more commonly driven by stochastic processes than that 
of abundant species [55], which are also observed in this 
study (Figure S4; Figure S6). Loss of rare species weakens 
the stochastic processes, while selection of copiotrophs 
strengthens deterministic processes. At a higher dilution 

level, bacteria may spend a longer time in regrowth, i.e., 
obtaining biomass/abundance similar to undiluted com-
munities [10]. During regrowth, copiotrophs could out-
compete oligotrophs like what happening in the early 
stage of primary succession [33]. Similarly, Abreu et al. 
found that the copiotrophs are more likely to outcompete 
the oligotroph at higher dilution rates using 2- to 5-spe-
cies coculture experiments [56]. This could be owing to 
the fast growth rates which could favor copiotrophs to 
quickly occupy the empty niche caused by disturbance 
[33, 57] or dilution [56]. Therefore, OTUs with high rrn 
copy numbers are more likely to persist in highly diluted 
microbial communities. Betaproteobacteria, which are 
thought to be copiotrophs in both freshwater [58] and 
soil ecosystems [28, 59] were found to increase with dilu-
tion level in both microcosm and the meta-analysis stud-
ies. The strong deterministic processes in communities 

Fig. 4  The correlation between modified stochasticity ratio (MST) and (a) dilution level, (b) species richness or (c) Shannon index for each experiment in 
the meta-analysis. The Pearson’s correlation is first calculated and transformed into effect size using Fisher’s z transformation. Dilution level equals to the 
logarithmically transformed dilution factor based on 10. Species richness is logarithmically transformed based on 10 before the calculation of Pearson’s 
correlation. The points (with 95% confidence intervals) represent effect sizes in different experiments and are given in increasing order. Red color repre-
sents the effect sizes significantly larger than 0, blue color represents the effect sizes significantly smaller than 0 and grey color represents effect sizes hav-
ing no significant difference with 0. z++ is the estimate of mean effect size using meta regression and *** represents P < 0.001 using meta-analysis model

 



Page 9 of 13Mao et al. Environmental Microbiome           (2023) 18:19 

with low diversity at high dilution level could be negative 
to ecosystems if the limited species selected by determin-
istic processes are not the ones carrying out important 
ecosystem functioning [23].

Loss of rare species causes the loss of specialized functions 
in DTE
In real scenarios, not all species face the same danger 
of extinction [60]. Species with low abundance in natu-
ral ecosystems are more likely to be lost due to different 
stressors, habitat fragmentation and drift [61]. DTE is 
thought to remove rare species, meeting the need for rare 
species loss [61, 62] and make DTE a popular method 
[10, 17]. Rare species making up the majority in natural 
communities play an essential role in ecosystem func-
tioning [63]. Many specialized functional genes are car-
ried by rare species in microbial communities such as the 

sulphate reduction or phenanthrene degradation [47, 64, 
65]. Thus, the low “redundancy” of specialized functional 
genes makes these functional performances more vul-
nerable to diversity loss [66]. For example, the abilities of 
chitin and cellulose degradation [67], xenobiotic carbon 
degradation [68, 69], N2O reduction [70], sulfate reduc-
tion [71], and Fe(III) reduction [72] are easily lost within 
a few steps of 10-fold dilution. It explains our observa-
tion that microbial specialized functions were impaired 
by biodiversity loss in most DTE studies (Fig. 4). Further-
more, the microbial specialized functions are better used 
for defining BEF relationships in DTE experiments as 
well as in field BEF observations.

Fig. 5  The correlation between mean rrn copy number and (a) dilution level, (b) species richness or (c) Shannon index for each experiment in the meta-
analysis. The Pearson’s correlation is first calculated and transformed into effect size using Fisher’s z transformation. Dilution level equals to the logarithmi-
cally transformed dilution factor based on 10. Species richness is logarithmically transformed based on 10 before the calculation of Pearson’s correlation. 
The points (with 95% confidence intervals) represent effect sizes in different experiments and are given in increasing order. Red color represents the effect 
sizes significantly larger than 0, blue color represents the effect sizes significantly smaller than 0 and grey color represents effect sizes having no significant 
difference with 0. z++ is the estimate of mean effect size using meta regression and *** represents P < 0.001 using meta-analysis model
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Different ratios of copiotrophs might change BEF 
relationships
Biodiversity not only includes the number of existing 
taxa, but also includes functional and phylogenetic infor-
mation [10, 73]. Functional diversity is well believed to be 
a better predictor for ecosystem functioning than simple 
taxonomic richness [73, 74]. For microorganisms, some 
functional traits at the genome level, such as the rrn copy 
number studied in this study, are effective in predicting 
species performance [75]. When those traits are applied 
at the community level, they are potential to give better 
predictions for the differences in microbial functional 
performance [76].

The biodiversity effect can be divided into the comple-
mentarity effect and the sampling effect (also called as 
selection effect) [77]. The complementarity effect means 
that different species could enhance ecosystem functions 
through niche separation or positive interactions [77]. 
The sampling effect means that the dominant species may 
have a strong effect on ecosystem functions and that the 

productive species are more likely to be present in diverse 
communities [77]. If the dominant species strongly favor 
a certain ecosystem function, the functional performance 
could be high even in a low-diversity community [78]. In 
the DTE experiments, the higher ratio of copiotrophs in 
low diversity communities could result in higher func-
tional performance through strong sampling effects. 
Compared to oligotrophs, copiotrophs adapt better to 
resource-rich conditions with faster growth rates and 
quick response to substrate addition [28]. For example, 
copiotrophs could utilize carbon substrates more widely 
and quickly than oligotrophs [28, 79]. This could explain 
why we found neutral BEF relationships in the diversity 
of carbon substrates (Fig.  3a, b). At the microbial com-
munity’s level, highly diluted communities may have 
a higher relative abundance of broad function-related 
genes than less diluted communities in DTE experiments 
[19]. Thus, when considering broad functions, the sam-
pling effect could outweigh the complementarity effect 
and lead to a neutral and even negative BEF relationship.

Fig. 6  The biodiversity-ecosystem functions relationships in (a) different studies and (b) different observations. (a) The number of studies reporting posi-
tive, negative, neutral and complex BEF relationships respectively. Here, the complex BEF relationships represent the studies which report more than one 
kind of BEFs (positive, neutral and negative) using different functions or the same function under different conditions. (b) The ratio of positive, neutral 
and negative BEF relationships considering broad functions and specialized functions respectively. The number above each column showed the number 
of observations for broad functions and specialized functions. Different observations of ecosystem functions are separated into broad functions and 
specialized functions. Broad functions are functions thought to be carried out by most microbes, including bacterial activities and degradations of labile 
carbon. Specialized functions are functions thought to be carried out only by specific microbes, including degradation of inert carbon, nitrogen cycling 
and other elementary cycling
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Implications for DTE
The rrn copy number is well known to vary from 1 to 15 
in bacterial genomes and 1 to 4 in archaeal genomes [80]. 
The species with a high rrn copy number could result 
in a high abundance in sequencing, although with a low 
cell number. To resolve this case, a pipeline to remove 
this bias has been built up [45]. We observed a signifi-
cant change in the rrn copy number after dilution, which 
means that the rrn copy number should be used to cor-
rect the abundance data and obtain the true bacterial cell 
number in later DTE studies.

Similarly, a correction is also needed for the result of 
quantitative polymerase chain reaction (qPCR). In dilu-
tion-to-extinction studies, the most widely used method 
to monitor the regrowth of microbial biomass is qPCR [9, 
24, 81]. Most of the studies used it to represent the bac-
terial biomass directly except the study by Domeignoz-
Horta et al. [81]. This method may not make a significant 
change in the natural community, where the ratio of 
copiotrophs is quite low [82, 83] and their mean rrn copy 
numbers are close to others. As we proved, the mean rrn 
copy number increased with dilution level and, thus, the 
direct use of qPCR may be inaccurate to represent bio-
mass recovery. It is important to use mean rrn copy num-
ber to correct the result of qPCR or using other methods, 
such as cell density using a flow cytometer [10] and 
microbial carbon [84] to quantify the microbial biomass.

Conclusion
The dilution-to-extinction experiments involve complex 
microbial ecological processes. We found that deter-
ministic processes become important with increasing 
dilution levels because of the selection of copiotrophs 
and the loss of rare species. The structural shift from 
oligotroph dominance to copiotroph dominance caused 
by dilution-to-extinction can change functional perfor-
mance and lead to more complex BEF relationships in 
DTE studies, especially for broad functions. Microbial 
specialized functions could be better used for quantify-
ing BEF relationships in DTE experiments as well as in 
field BEF observations. In addition, the selection of copi-
otrophs may cause a higher mean rrn copy number and 
make qPCR, if not corrected, ineffective in represent-
ing the true biomass. Our findings are helpful for future 
studies exploring microbial BEF relationships.
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