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Abstract 

Background Polycyclic aromatic hydrocarbon (PAH) contamination has been a worldwide environmental issue 
because of its impact on ecosystems and human health. Biodegradation plays an important role in PAH removal in 
natural environments. To date, many PAH-degrading strains and degradation genes have been reported. However, 
a comprehensive PAH-degrading gene database is still lacking, hindering a deep understanding of PAH degraders 
in the era of big data. Furthermore, the relationships between the PAH-catabolic genotype and phenotype remain 
unclear.

Results Here, we established a bacterial PAH-degrading gene database and explored PAH biodegradation capability 
via a genome-function relationship approach. The investigation of functional genes in the experimentally verified PAH 
degraders indicated that genes encoding hydratase-aldolase could serve as a biomarker for preliminarily identifying 
potential degraders. Additionally, a genome-centric interpretation of PAH-degrading genes was performed in the 
public genome database, demonstrating that they were ubiquitous in Proteobacteria and Actinobacteria. Meanwhile, 
the global phylogenetic distribution was generally consistent with the culture-based evidence. Notably, a few strains 
affiliated with the genera without any previously known PAH degraders (Hyphomonas, Hoeflea, Henriciella, Saccha-
romonospora, Sciscionella, Tepidiphilus, and Xenophilus) also bore a complete PAH-catabolic gene cluster, implying 
their potential of PAH biodegradation. Moreover, a random forest analysis was applied to predict the PAH-degrading 
trait in the complete genome database, revealing 28 newly predicted PAH degraders, of which nine strains encoded a 
complete PAH-catabolic pathway.

Conclusions Our results established a comprehensive PAH-degrading gene database and a genome-function rela-
tionship approach, which revealed several potential novel PAH-degrader lineages. Importantly, this genome-centric 
and function-oriented approach can overcome the bottleneck of conventional cultivation-based biodegradation 
research and substantially expand our current knowledge on the potential degraders of environmental pollutants.

Keywords PAH, Biodegradation, Database mining, Functional gene, Genome-centric analysis, Genotype–phenotype 
relationship, Random forest

Background
Polycyclic aromatic hydrocarbon (PAH) contamina-
tion has been a global environmental issue for decades. 
PAHs are a group of organic compounds composed 
of two or more fused aromatic rings with natural and 
anthropogenic sources [1–3], which are well-recognized 
as carcinogenic, teratogenic, and genotoxic compounds 
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[4–6]. They are ubiquitous in the environments [3, 7, 8] 
at relatively high concentrations, likely to accumulate in 
animal tissues and vegetation due to their high lipophi-
licity [9–11], and thus harmful to ecosystems and human 
health. Although PAHs could be eliminated by adsorp-
tion [12], volatilization, and photochemical degradation 
[13], microbial degradation is one of the dominant mech-
anisms of PAH removal in natural environments [7, 14, 
15]. In the past half-century, a wide variety of PAH-cata-
bolic bacteria, archaea, fungi, and microalgae have been 
isolated mostly from contaminated soils and sediments 
[16], among which bacteria-mediated biodegradation has 
been extensively studied. Currently, the identified PAH-
degrading bacteria are distributed in diverse genera, such 
as Pseudomonas spp. [17, 18], Sphingomonas spp. [19, 
20], Mycobacterium spp. [21, 22], Rhodococcus spp. [23, 
24], Burkholderia spp. [25, 26], etc. Nevertheless, it is 
believed that most PAH-degrading bacteria still hide in 
plain sight due to the isolation bottleneck [27]. Therefore, 
there is a dire need for a new method to efficiently iden-
tify novel potential PAH degraders.

Basically, biological traits are developed based on their 
encoding genes. Traditional culture-based approaches 
have set a good foundation for understanding PAH bio-
degradation pathways, functional genes, and enzyme-cat-
alyzed reactions [15]. Commonly, in the upper pathway, 
biodegradation of PAHs is initially catalyzed by ring-
hydroxylating dioxygenases (RHDs) [28] and followed 
by other enzymes encoded by nah gene cluster (nahB-
CDEF), which is well characterized in naphthalene and 
phenanthrene aerobic biodegradation [29, 30], but with a 
broad substrate specificity to aromatic compounds [31]. 
Conventionally, the nahAc encoding α-subunit of RHDs 
was usually employed as the biomarker to demonstrate 
the diversity and abundance of RHDs in PAH-degrading 
isolates and multiplex systems by quantitative real-time 
PCR [32, 33]. Nevertheless, owing to its high specific-
ity, the primers of nahAc only target a relatively narrow 
range of nahAc-like sequences and result in an under-
estimated PAH-degrading consortia [34, 35]. Moreover, 
other PAH-catabolic gene clusters also exist in Gram-
negative bacteria, including nag [36], pah [18], ndo [37], 
and phn [25] gene clusters, as well as in Gram-positive 
bacteria, including nar [16, 38], phd [39], nid [40], and 
pdo [41] gene clusters. However, a unified database inte-
grating the diverse PAH-degrading genes for exploring 
potential novel PAH degraders is still lacking.

In the era of high-throughput sequencing, access to the 
genome information of currently uncultivable microbes 
has opened a new window to explore this topic. Con-
current with the advance of long-read sequencing tech-
nologies, the number of high-quality genomes increased 
exponentially. The current technology improvements 

make it possible to interpret biological traits based on 
their whole genomes instead of single or multiple bio-
markers. Meanwhile, the biodegradation processes 
of PAHs and functional enzymes are very diverse and 
complicated in different species (i.e., Pseudomonas spp., 
Mycobacterium spp., and Rhodococcus spp.) and habi-
tats (i.e., aerobic, anoxic, and anaerobic) [16, 42]. The 
unknown alternative genes or enzymes for individual 
steps may generally exist, which are not represented in 
the currently available gene database. Hence, it remains 
a big challenge to properly identify these genetic hints 
based on similarity search, not to mention their func-
tional potentials. Fortunately, the introduction of the 
Hidden Markov Model (HMM) [43] has made it pos-
sible to detect remote homology between proteins with 
high efficiency and accuracy. This is a popular method 
predicting biological functions based on conserved 
protein domains, and has been widely applied to gene 
identification [44], phylogenetic analysis [45], and data-
base construction [46]. Therefore, HMM was employed 
in the present study aiming to improve the accuracy of 
functional gene identification and profile the functional 
genes at scales ranging from a single isolate to the whole 
genome database.

Herein, we collected the protein sequences of key 
enzymes responsible for the upper pathway of PAH 
metabolism and established a dedicated database for 
similarity- and HMM-based searches. By investigating 
the distribution of PAH-degrading genes in the known 
degraders with complete genomes, we evaluated the 
performance of two alignment methods, paving the way 
for the identification of novel PAH degraders on a large 
scale. Then, a genome-centric interpretation of PAH-
catabolic genes was conducted in the NCBI genome 
database, aiming to depict a phylogenetic distribution of 
PAH-degrading genes and discover novel lineages con-
taining potential PAH degraders. Finally, a preliminary 
exploration to link the PAH-catabolic genotypes to phe-
notypes via a random forest analysis was performed and 
applied to predict the PAH biodegradation trait in the 
complete genome database. In general, this study based 
on the genome-function relationship represents a para-
digm shift and provides a novel insight into conventional 
biodegradation research.

Methods
Construction and validation of PAH‑degrading gene 
database
The PAH-degrading gene database was constructed fol-
lowing the workflow depicted in Fig.  1. The seed pro-
tein sequences were collected based on naphthalene 
and phenanthrene aerobic biodegradation pathways 
in the Kyoto Encyclopedia of Genes and Genomes 
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(KEGG) pathway database. Those PAH-degrading 
genes with more than three protein sequences were 
used to construct initial profile HMMs. To retrieve 
more PAH-degrading protein sequences, a database 
search against the UniProtKB was performed by two 
strategies, namely HMMsearch and keywords. Then, 
a phylogenetic tree topology was constructed using 
MEGAX (v10.0.5) [47], and the questionable sequence, 
which was distinct from the core cluster, was filtered 
out after manually checking. Subsequently, a leave-one-
out test was applied for fine adjustment of the protein 
database, where the sequence leading to significantly 

low sensitivity and specificity values was marked. Next, 
a training subset (two-thirds of sequences) was ran-
domly chosen from the enriched database to construct 
profile HMM, while the rest were used as the test data-
set for validation. A specific gathering threshold (GA) 
was selected for each profile HMM, and the optimal 
GA value was obtained according to the sensitivity 
and specificity using a bash script. The profile HMMs 
with both sensitivity and specificity values exceeding 
90% were retained as the validated models. It is a loop 
that will stop when there is no further addition to this 
expanded database to form the final version.

Fig. 1 The workflow of PAH-degrading gene database construction
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Genome and protein sequence
The GenBank flat file (.gbff) of 22,507 bacteria with com-
plete genomes, 263,643 bacteria with draft genomes 
(updated on March 2021), and 7045 archaeal genomes 
(updated on Apr 2023) were downloaded from the NCBI 
database. Their nucleotide sequences were extracted by an 
in-house Python script. Then, their open reading frames 
(ORFs) were predicted using prodigal (v2.6.3) [48].

PAH‑degrading genes identification and PAH‑degrading 
bacteria prediction
Two different methods (similarity- and HMM-based pipe-
lines) were adapted to identify PAH-degrading genes in 
47 experimentally confirmed PAH degraders with com-
plete genomes. The similarity-based search was performed 
using DIAMOND (v2.0.8.146) [49] with an identity of over 
70% and a hit length ratio of over 70%. For the HMM-
based search, MAFFT (v7.310) [50] and hmmbuild from 
HMMER 3.0 suite [51] were used to align sequences and 
generate the profile Hidden Markov models. PAH-cata-
bolic genes were identified using the profile HMMs and 
hmmsearch at -cut_ga mode. After comparing the accu-
racy and efficiency of the two methods, only the HMM-
based approach was employed to interpret the distribution 
of PAH-degrading genes in the public genome database. 
The phylogenetic trees were visualized using iTOL (v6.6) 
[52].

To further investigate the genotype–phenotype relation-
ships in the PAH-degrading bacteria, a supervised learning 
algorithm, Random Forest, was applied in this study. The 
analysis was performed with the R package ‘randomFor-
est’ [53] using the maximum GA bit score of each gene in 
the genome. In addition to the numbers of variables at each 
node  (mtry) and trees in the forest  (ntree), the ratio of True/
False in the training dataset was also considered since the 
majority of bacteria were not PAH degraders. Basically, 
two-thirds of genomes were randomly chosen from the 
dataset for training the model, while the rest were utilized 
for verification. Four standard metrics are used to evalu-
ate the quality of the proposed model, consisting of sen-
sitivity (Sn), specificity (Sp), overall accuracy (Acc), and 
Mathew’s correlation coefficient (MCC) with the following 
definitions:

Sn =
TP

TP + FN

Sp =
TN

TN + FP

Acc =
TP + TN

TP + TN + FP + FN

where TP (true positive) and TN (true negative) are cor-
rectly predicted PAH-degrading positive and negative 
bacteria, respectively. FP (false positive) and FN (false 
negative) indicate falsely predicted PAH-degrading posi-
tive and negative bacteria, respectively. Among these 
metrics, MCC is the most stringent one, as it takes into 
account both accuracy and error rates.

Results and discussion
Experimentally verified PAH‑degrading strains
To date, numerous PAH-degrading strains (more than 
200) have been isolated from various habitats as afore-
mentioned. More than 95% of them were from the 
domain of bacteria, but limited information was available 
regarding their genome. Therefore, the PAH-degrading 
strain database only comprised genome sequences of 95 
reported PAH-degrading bacterial strains. The detailed 
information was summarized in the supplementary 
material (Additional file  1: Table  S1). The profiling of 
these known PAH-degrading strains (Fig.  2) demon-
strated that they were phylogenetically diverse owing to 
the evolutions in different habitats as well as horizontal 
gene transfer [54, 55]. Notably, 95% of those degrada-
tion strains were affiliated with two phyla of Proteobac-
teria and Actinobacteria. Of the 42 genera represented, 
Pseudomonas (14%) constitutes most of the reported 
PAH-degrading strains, followed by Rhodococcus (10%), 
Mycobacterium (9%), and Sphingobium (7%). Addi-
tionally, most of the identified PAH-degrading strains 
could catabolite multiple PAHs, such as Pseudomonas 
putida OUS82 and Mycolicibacterium vanbaalenii PYR-
1, supporting that the functional enzymes have a broad 
substrate specificity to multiple aromatic compounds 
(Additional file 1: Table S1).

PAH‑degrading protein sequence database
In addition to the PAH-degrading strain database, it is 
critical to construct a protein database for the anno-
tation of related gene clusters. Enzymes related to the 
aerobic biodegradation pathways of six common PAHs 
(naphthalene, phenanthrene, anthracene, fluorene, 
pyrene, and benzo[a]pyrene) have been well archived 
in the KEGG database, as well as their associated 
enzymes. The protein sequences were retrieved based 
on the naphthalene and phenanthrene biodegradation 
pathways to form a seed database. A comprehensive 
database was prepared by expanding the seed data-
base following the workflow described in the Methods. 
After expanding, the nar gene cluster was included to 

MCC =
TP × TN − FP × FN

√
(TP + FP)× (TN + FN )× (TP + FN )× (TN + FP)
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improve the sensitivity for Gram-positive bacteria, 
such as Rhodococcus spp. Simultaneously, for RHDs, 
only nahAc genes encoding the ion-sulfur subunit were 
retained in the database because they were conserved 
and could serve as a biomarker for RHDs [32, 56, 57]. 
Likewise, nahF and phdK genes were excluded due to 
their poor phylogenetic conservation, which is hard to 
choose a suitable GA cut-off to ensure both sensitiv-
ity and specificity. Notably, nag, ndo, pah, phn, dox, 
and bph gene clusters were also included in the current 
database since they were homologous to the nah genes 
cluster. Eventually, a total of 1,191 manually checked 
PAH-degrading protein sequences were included in the 

comprehensive database, a twice-fold increase in the 
number of sequences compared with the seed database 
(Additional file 3: Figure S1). These reference sequences 
were from 17 different degradation genes, which could 
be classified into three types based on degradation 
mechanisms, namely (1) nah, (2) nid and phd, and (3) 
nar gene clusters (Additional file 3: Figures S2–4). The 
detailed information on each protein sequence was 
summarized in the Supplementary Information (Addi-
tional file 2: Tables S2–8). In the database, the nah gene 
cluster (843 protein sequences, 71% of total sequences 
in the database) was the most dominant type, followed 
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by the nid and phd gene cluster (26%) and the nar gene 
cluster (3%).

Similarity‑ and HMM‑based searches for verified 
PAH‑degrading strains
In the present study, similarity- and HMM-based meth-
ods were employed to identify functional genes in the 47 
experimentally verified PAH-degrading strains (NCBI 
assembly level = Complete) (Additional file  1: Table  S1 
and Fig.  3). Both approaches could accurately identify 
most PAH-degrading genes, whereas the HMM-based 

method allows us to retrieve the potential PAH-degrad-
ing genes which, however, cannot be identified by the 
similarity-based strategy, such as nahAc genes in Cyclo-
clasticus and Acidovorax carolinensis. Because HMM 
captures conserved protein domains necessary for the 
protein function, the HMM-based method thus is more 
sensitive and rapid in detecting remotely homologous 
sequences on a large scale. Notably, not all the PAH-
degrading strains have a complete pathway of PAH bio-
degradation, such as Archomobacter denitrificans PheN1, 
Celeribacter indicus P73, and Martelella sp. AD-3 

Fig. 3 The PAH-degrading gene distribution in 47 experimentally validated PAH-degrading bacteria. The heatmap compares similarity- and 
HMM-based searches. The right column demonstrates the location of PAH-degrading genes, and detailed information is depicted in Additional 
file 3: Figure S6. Notably, the identifications of nahE in Mycobacteriaceae and Rhodococcus were phdJ and narC, respectively
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(Fig.  3). A parsimonious interpretation of gene deletion 
was the existence of alternative genes/enzymes for the 
individual steps in these strains, which have not yet been 
reported.

Furthermore, both methods can accurately distinguish 
the nahAc, nidA, and narAa encoding the large subu-
nits of RHDs even though they showed significant but 
moderate sequence homology to each other [21, 34]. 
However, both approaches cannot alleviate the misclas-
sification issue on nahE, phdJ, and narC in Gram-positive 
strains. The misclassification was defined as the single 
protein sequence being classified into multiple gene types 
under the optimized cut-off parameters. For example, 
the phdJ gene was identified as the nahE gene by similar-
ity- and HMM-based methods in Mycobacteriaceae spp. 
Because both NahE and PhdJ were N-acetylneuraminate 
lyase subgroup members with a conserved (β/α)8 bar-
rel structure, two strictly conserved active site residues 
(tyrosine and lysine), and a GXXGE motif (Gly-61, Thr-
62, Phe-63, Gly-64, and Glu-65) [58]. It is not easy to 
distinguish them based on either similarity of the whole 
sequence or protein domains. In addition, the narC gene 
encoding aldolase in Rhodococcus spp. was classified 
into the nahE group, which was located near the narB 
gene and involved in the biodegradation of PAH com-
pounds [24, 38, 59]. The misclassification suggested that 
hydratase-aldolase-coding genes were more conservative 
than RHDs-coding genes, consistent with the phyloge-
netic analysis of these PAH-degrading genes (Additional 
file  3: Figure S2). Meanwhile, hydratase-aldolase-coding 
genes were identified in 46 strains (98%), and, therefore, 
genes encoding hydratase-aldolase may be a superior 
biomarker for PAH degraders. Moreover, the primers 
to amplify nahE, phdJ, or narC have been well designed 
and evaluated in the previous studies [34, 58], provid-
ing a rapid way to initially explore the ecological role 
and degradation potential of PAH-catabolic bacteria in 
the natural environment. Notably, the conclusion from 
genome-centric interpretation was in agreement with the 
results based on the phylogenetic analysis of PAH-cata-
bolic enzymes, which proposed pahE (including nahE, 
phdJ, and narC) as a functional marker because all the 
enzymes encoded by pahE clustered in an independent 
clade [34].

Intriguingly, narAa and narAb were also identified 
in Mycobacteriaceae spp., which were Gram-positive 
strains and contained a complete nid and phd gene clus-
ter as well. We suspected the involvement of the enzyme 
encoded by narA during the initial attack of PAH biodeg-
radation, but scientific evidence is still lacking. It requires 
more experimental validation conducted by transcrip-
tomics to further investigate the expression of narA dur-
ing the biodegradation process. Meanwhile, the location 

and gene arrangement of PAH-catabolic genes were 
investigated in the 47 identified PAH-degrading strains, 
showing similar gene arrangements in Pseudomona-
daceae spp., Comamonadaceae spp., and Mycobacte-
riaceae spp. (Additional file  3: Figure S5). Interestingly, 
plasmid-bearing catabolic genes were detected in Pseu-
domonas spp., Sphingobium spp., and Rhodococcus spp. 
with a high frequency (8 out of 13 strains) (Fig. 3 and S6). 
This result was consistent with numerous studies that 
characterized the functional genes in PAH degraders in 
the genera of Pseudomonas [54, 60], Sphingobium [61, 
62], and Rhodococcus [24, 59]. The presence of degrada-
tion genes on the transmissible plasmids, such as NAH7 
[63], pKS14 [64], and pNL1 [65], has indicated easy 
spreading of PAH-catabolic ability via horizontal gene 
transfer in contaminated sites [54, 66].

The distribution of PAH‑catabolic genes and strains 
in the public database
Subsequently, a large-scale survey in the NCBI database, 
including all complete-, scaffold-, contig-, and chromo-
some-level bacterial assemblies, was conducted to inves-
tigate the genome-centric portrait of PAH-degrading 
genes (Fig.  4). At the phylum level, the PAH-degrading 
genes were ubiquitous in Proteobacteria and Actino-
bacteria, in agreement with the result of our collected 
PAH-degrading strain database, proving the representa-
tiveness of our genomic database. Meanwhile, they were 
also found in other phyla, such as Firmicutes, and Chloro-
flexi, implying a phylogenetic diversity of PAH-degrading 
strains. Significantly, nah genes were the most widely 
distributed degradation genes in the public database, 
especially in Gram-negative strains of Proteobacteria. 
In Actinobacteria, three types of PAH-catabolic genes 
were observed, where the enzymes encoded by nid and 
phd genes were a conservative trait for PAH-catabolic 
strains in the family of Mycobacteriaceae. Moreover, the 
enzymes encoded by nar gene cluster were only identi-
fied in Gram-positive strains. At the family level, over 
30% of strains with PAH-degrading genes were affiliated 
with Sphingomonadaceae, Pseudomonadaceae, Nocar-
diaceae, and Mycobacteriaceae, indicating that these 
strains constituted the majority of PAH degraders. Gen-
erally, these genome-centric results were consistent with 
cultivation-based experimental data (Fig. 2).

Additionally, there were 173 strains with a complete 
PAH-catabolic gene cluster and 52 with a near-com-
plete PAH-catabolic gene cluster (one gene missing). 
The phylogenetic tree and details of these 225 strains 
were summarized in Additional file  3: Figure S7 and 
Additional file  2: Table  S19, respectively. Intriguingly, 
in addition to those strains phylogenetically close to the 
well-known PAH degraders, nine strains in the genera 



Page 8 of 13Huang et al. Environmental Microbiome           (2023) 18:39 

of Hyphomonas, Hoeflea, Henriciella, Saccharomono-
spora, Sciscionella, Tepidiphilus, and Xenophilus also 
bore the potential of PAH biodegradation owing to 
their possession of a complete PHA-degrading gene 

cluster (Additional file  3: Figure S8). Seven of them 
were isolated from marine water, and the rest two were 
from production water (Tepidiphilus sp. J18 [67]) and 
soil (Xenophilus azovorans DSM 13,620 [68]). Despite 

Fig. 4 The phylogenetic distribution of PAH-degrading genes. nah genes (nahAc, nahB, nahC, nahD, and nahE) are shown in pink circle plots. nar 
genes (narAa, narAb, narB, and narC) are shown in blue triangle plots. nid and phd genes (nidA, nidB, nidD, phdE, phdF, phdG, phdI, and phdJ) are 
shown in green square plots. The top four families with the most PAH-catabolic genes, Pseudomonadaceae, Sphingomonadaceae, Mycobacteriaceae, 
and Nocardiaceae, are highlighted in blue color
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the enrichment of these genera observed in PAH-con-
taminated sites [69, 70], related PAH-degrading isolates 
have not yet been reported, probably owing to the iso-
lation bottleneck. Therefore, these seven genera were 
potential novel PAH-degrader lineages.

Furthermore, we performed a preliminary investiga-
tion in archaeal assemblies (data not shown), revealing 
that two halophilic archaea, namely Halopenitus male-
kzadehii and Halobellus rufus, contained a nahE gene. 
They were affiliated with Halorubraceae and Halofera-
caceae, respectively, and phylogenetically related to the 
identified PAH-degrading archaea (at the family level) 
[71, 72]. Interestingly, a gentisate-1,2-dioxygenase-like 
gene (gdoA) was also identified in both archaeal assem-
blies based on a similarity search (> 75% identity), which 
was homologous to bacterial dioxygenases and involved 
in the aromatic degradation in Haloferacaceae sp [73]. 
Nevertheless, the exploration of archaea-mediated PAH 
biodegradation is still in its infancy, and archaeal PAH-
degrading genes were not included in the present PAH-
degrading gene database, requiring more studies to pave 
the way for investigating biological traits on a genome 
scale.

Prediction of PAH‑degrading strains in the complete 
genome database
In the random forest algorithm, the three most impor-
tant parameters were the number of trees  (ntree), vari-
ables randomly chosen at each node split  (mtry), and the 
composition of the training dataset. When the number of 
non-degraders was 3 to 8 folds larger than the number of 
PAH degraders in the dataset, the classifiers achieved a 
high accuracy with average MCC values of ~ 0.982 (Addi-
tional file 3: Figure S8a). Theoretically, a higher value of 
 ntree will lead to better accuracy, but the computation 
time will increase simultaneously. Additionally, theoreti-
cal and empirical research has highlighted that classifi-
cation accuracy is more sensitive to  mtry than  ntree [74]. 
Therefore,  ntree was fixed at 2000 in the present study, and 
 mtry was optimized from 1 to 17 with a step size of 1 to 
generate the prediction model. The error rate decreased 
with the increase of  mtry value and leveled off at a low 
error rate of 0.056 after the  mtry value was set as 3 (Addi-
tional file  3: Figure S8c). Then, under the optimized 
parameters, we noticed that nahE, phdJ, and phdG genes 
played a crucial role in the classifier based on the high 
mean decrease accuracy and mean decrease gini val-
ues [75, 76], supporting the proposal of genes encoding 
hydratase-aldolase as a new biomarker for PAH-degrad-
ing strains [34] (Additional file 3: Figure S9). In contrast, 
nahF with low mean decrease accuracy and gini values 
was, therefore, excluded from the PAH-degrading gene 
database.

The optimized model (random forest classifier) was 
applied to predict PAH-degrading bacterial strains 
based on the results from the HMM-based search in 
the complete genome database (Fig.  5). Given that 
the degradation mechanism in Mycobacteriaceae was 
only reported via the enzymes encoded by nid and phd 
genes, strains were divided into three groups before 
model construction and prediction, namely, Gram-
negative, Gram-positive, and Mycobacteriaceae. Only 
the strain whose prediction was consistent with its 
group tag would be output. In total, 28 strains were 
newly predicted to be capable of PAH biodegradation, 
including 14 strains from the Gram-negative group, 7 
strains from the Gram-positive group, and 7 strains 
from the Mycobacteriaceae group. Among these newly 
predicted PAH degraders, nine strains contained a 
complete PAH-catabolic gene cluster. In the Gram-
negative group, most strains (12) were from Proteo-
bacteria and phylogenetically related to the identified 
degraders. In addition, Thermomicrobium roseum 
DSM 5159 and Sediminispirochaeta smaragdinae DSM 
11,293 only harbored the nahE gene and were affiliated 
with the phyla of Chloroflexi and Spirochaetes, respec-
tively. However, no PAH-degrading strain has been 
isolated from these two phyla to date, and the predic-
tion needs further evaluation. Probably, this hydratase-
aldolase-coding gene was involved in other catabolic 
processes since both strains were isolated from oligo-
trophic environments [77, 78]. In the Gram-positive 
group, all potential PAH-degrading strains were affili-
ated with Actinobacteria, of which PAH degrader has 
been reported previously.

Apart from the nine strains with a complete PAH-
degrading pathway which were not publicly avail-
able, we purchased six strains from DSMZ for further 
experimental verification, including two predicted 
PAH-catabolic strains. However, none of them showed 
a PAH biodegradation capability during 30-day incuba-
tion with naphthalene as the sole carbon source (Addi-
tional file  3: Figure S10, the degradation  experiment 
was described in SI). But gene expression is an intri-
cate process controlled by the joint effect of multiple 
aspects, such as environmental factors [79], quorum 
sensing [80], etc. In addition, promoters (e.g.,  PpahA and 
 PpahR [81]) and regulators (e.g., nahR [82], nagR [83], 
and narR [59]) also play an essential role in the expres-
sion of PAH degradation. Moreover, the expression of 
regulatory genes requires induction of naphthalene [59, 
84] or its degradation metabolite, salicylate [29, 85]. 
Hence, we could only reach a limited conclusion that 
these strains did not exhibit their PAH-catabolic trait 
under this specific experimental condition. Simultane-
ously, among these six strains, three contained a nahE 
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gene and one carried a nahAc gene, demonstrating that 
a single biomarker, either nahAc or nahE, could not be 
an entirely reliable indicator for PAH degraders. More-
over, the two predicted PAH degraders indeed had an 
incomplete nah or nar gene cluster, hinting that the 
poor performance was probably due to the functional 

gene deletion. Meanwhile, the result also suggested that 
random forest analysis might be aggressive to some 
extent when applied to predict biological traits because 
every enzyme involved in PAH biodegradation was 
indispensable.
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Fig. 5 The distribution of PAH-degrading genes in the NCBI complete genome database. From the outside to the inside: (1) The color in the 
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Conclusions
In the present study, a comprehensive bacterial PAH-
degrading gene database was established, and a genome-
centric portrait of bacterial PAH-degrading competency 
was depicted. Then, a global view of PAH-catabolic genes’ 
phylogenetic distribution was investigated in the public 
database, showing a wide distribution in Proteobacte-
ria and Actinobacteria. Simultaneously, seven potential 
novel PAH-degrader lineages were observed since a few 
strains from these genera born a complete PAH-catabolic 
gene cluster. Furthermore, random forest analysis was 
employed to predict potential PAH degraders in the com-
plete genome database. In total, 28 strains were predicted 
as potential new PAH degraders, including nine strains 
encoding a complete PAH-degrading pathway.

Nevertheless, we have to keep in mind that gene 
expression involves the coordination of multiple bio-
logical traits, such as regulators, promoters, and genes 
encoding lower pathways. Meanwhile, compared to aero-
bic bacteria-mediated PAH biodegradation, it has been 
reported that PAHs can also be biodegraded by anaero-
bic bacteria [86–88], fungi [89], halophilic archaea [71], 
and microalgae [90] via significantly different pathways. 
These factors were not considered in the present study, 
requiring more experimental evidence and studies to 
move forward. Likewise, the accuracy of this machine 
learning-based and function-orientated method needs 
to be further evaluated by experiments. Nevertheless, we 
believe the method presented in this study could facili-
tate the exploration of alternative PAH-degrading genes, 
enzymes, and novel degradation mechanisms.
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