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Abstract
Background Microbial communities are of tremendous importance for ecosystem functioning and yet we know 
little about the ecological processes driving the assembly of these communities in the environment. Here, we used an 
unprecedented experimental approach based on the manipulation of physical distance between neighboring cells 
during soil colonization to determine the role of bacterial interactions in soil community assembly. We hypothesized 
that experimentally manipulating the physical distance between bacterial cells will modify the interaction strengths 
leading to differences in microbial community composition, with increasing distance between neighbors favoring 
poor competitors.

Results We found significant differences in both bacterial community diversity, composition and co-occurrence 
networks after soil colonization that were related to physical distancing. We show that reducing distances between 
cells resulted in a loss of bacterial diversity, with at least 41% of the dominant OTUs being significantly affected 
by physical distancing. Our results suggest that physical distancing may differentially modulate competitiveness 
between neighboring species depending on the taxa present in the community. The mixing of communities that 
assembled at high and low cell densities did not reveal any “home field advantage” during coalescence. This confirms 
that the observed differences in competitiveness were due to biotic rather than abiotic filtering.

Conclusions Our study demonstrates that the competitiveness of bacteria strongly depends on cell density and 
community membership, therefore highlighting the fundamental role of microbial interactions in the assembly of soil 
communities.
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Background
Understanding community assembly processes is one of 
the fundamental goals in community ecology. Although 
soil microbial communities play an essential role in sev-
eral key ecosystem functions such as biogeochemical 
cycling, plant productivity and carbon sequestration 
[1–3], it is unclear what process, or combinations of 
processes, are driving their composition. For example, 
much focus has been laid on the role of environmental 
filters in shaping microbial communities [4] while how 
interactions among microorganisms drive their assem-
bly remains largely unexplored [5]. However, a growing 
body of evidence suggests that these biotic interactions 
may also play an important role in microbial community 
assembly [6–8].

Most microorganisms face a constant battle for 
resources and a large range of interactions between 
microorganisms has been reported [9]. For example, 
competitive interactions can occur through either 
exploitative or interference mechanisms [10]. Exploit-
ative competition is an indirect mechanism in which the 
consumption of limiting resources by one strain restricts 
its supply to competitors, while interference competition 
is a direct mechanism involving the production of anti-
microbial compounds (e.g. antibiotics, toxins) to harm 
competitors [11]. On the opposite, positive interactions 
include tightly coupled mutualistic interactions such as 
syntrophy, in which both partners depend on each other 
to perform a metabolic activity [12]. Whether positive 
or negative, interactions mostly occur between individu-
als that are close in space. In some cases, a physical con-
tact between cells is even required for the injection of 
secreted toxins to the rival strain as exemplified by the 
type VI secretion system, which mediates interactions 
between a broad range of Gram-negative bacteria. In soil, 
it has been estimated that a single bacterium has about 
120 neighboring species within interaction distance [13]. 
Yet, we still lack a clear understanding of how prevalent 
these interactions are, and how they affect community 
composition.

Theory predicts that in a new environment and without 
immediate neighbors, microorganisms will first colonize 
the empty space, which can be considered as a surrogate 
limiting resource [14, 15]. After this initial phase of range 
expansion, direct interactions at the boundaries between 
neighboring patches of different species will emerge 
and affect the speed of expansion [16, 17]. In ecology, 
the competition-colonization trade-off is a fundamen-
tal mechanism proposed to explain species coexistence, 
where better competitors are inferior colonizers and vice 
versa [18, 19]. It can therefore be expected that the physi-
cal distance between species during the range expansion 
phase is of importance, as shorter distances will favor 
species with superior competitive abilities over species 

with superior colonization abilities [20, 21]. Although 
models have been used to explore how the density of 
surrounding neighbors influences biotic interactions 
[22–24], we are not aware of any study that has explicitly 
tested how changing physical distance between microbes 
in a complex environment affect the outcome of competi-
tion for space.

Here we examine to which extent the distance between 
neighboring species in soil determine their competi-
tiveness for a more general understanding of the role of 
biotic interactions in microbial community assembly. 
We hypothesized that experimentally manipulating the 
physical distance between microbial cells will modify the 
interaction frequency leading to differences in microbial 
community composition. For example, an increase in the 
initial physical distance between neighboring cells would 
reduce the interaction frequency, and thus favor poor 
competitors in the community (Fig. 1A). Since both the 
type and the importance of interactions vary between 
taxa [25–27], we also hypothesized that the importance 
of physical distance in shaping microbial communi-
ties will be modulated by community membership (i.e. 
the taxa present in the community). To generate micro-
bial community inoculums with noticeable variation in 
membership, we first subjected a soil microbial commu-
nity to two removal treatments, exposure to heat-shock 
or ramoplanin, which are depleting Gram-negative and 
Gram-positive bacteria, respectively [8]. These treat-
ments were selected because of the distinctive traits 
between Gram-negative and Gram-positive taxa that can 
affect their competitiveness. For example, Gram-negative 
bacteria possess an additional outer membrane, which 
increases resistance to antibiotics [28]. The contact-
dependent antagonistic type VI secretion system is also 
only present in Gram-negative bacteria [29]. In addition, 
Gram-negative bacteria rely on acylated homoserine lac-
tones as cell density-dependent quorum-sensing signal-
ing molecules, while Gram-positive bacteria are mostly 
using oligopeptides [30, 31]. We then experimentally 
manipulated the physical distance between microbial 
cells by inoculating the same species pool (control, heat-
shock and ramoplanin treated microbial communities), 
into increasing volumes of sterilized soil (Fig. 1B). Finally, 
we performed a coalescence experiment with a reciprocal 
transplant design by mixing microbial communities that 
assembled with different initial distances between cells in 
order to assess their relative competitiveness (Fig. 1C).

Methods
Soil sampling and experimental design
The soil was collected from the Epoisses experimental 
farm in France (47° 30′ 22.1832′′ N, 4° 10′ 26.4648′′ E) in 
October 2019 and sieved through 4 mm. The soil proper-
ties were 41.9% clay, 51.9% silt, and 6.2% sand, pH 7.2 (pH 
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Fig. 1 Schematic illustration of the experimental design. (A) Examples of possible scenarios outlining the impact of increasing physical distance between 
the neighboring cells (x-axis) on the importance of biotic interactions between microbial species (y-axis). Negative and positive interactions are repre-
sented in red and blue, respectively. (B) In the first step, the physical distance between microbial cells was experimentally manipulated by introducing 
the same species pool into increasing volumes of sterilized soil (n = 10) for control, heat-shock and ramoplanin communities. (C) Step 2 consisted in a 
coalescence experiment with a reciprocal transplant design by mixing microbial communities that assembled at high (d1) or low (d2) densities during 
step1 in sterile soil (coalesced communities). Soils colonized under the d1 and the d2 initial densities were also incubated separately with sterile soil at 
high (d1) or low (d2) densities (reference communities)
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in water measured according to the ISO 10,390 standard), 
C and N content 15.5 and 1.4 g.kg− 1 dry soil, respectively. 
The soil was γ-sterilized (70 kGy at Conservatome, Dag-
neux, France) and used to prepare microcosms with 4 
different soil volumes (i.e. d1 = 6  g, d2 = 43  g, d3 = 134  g 
and d4 = 508  g) corresponding to distinct diameters (i.e. 
d1 = 2  cm, d2 = 5.4  cm, d3 = 9.5  cm and d4 = 18.5  cm) in 
order to obtain the same soil depth (2 cm) in all micro-
cosms. Each microcosm volume was replicated 10 times. 
Soil suspensions were prepared by initially adding 100 g 
equivalent dry mass of fresh soil to 150 ml sterile distilled 
water. This mixture was blended using a Waring blender 
and then subjected to a tenfold dilution under sterilized 
conditions. Variation in community memberships was 
induced through the heat-shock (HS) and the biocidal 
antibiotic ramoplanin (RA) removal treatments, which 
are depleting Gram-negative and Gram-positive bacte-
ria, respectively. The HS treatment was applied as fol-
lows: 0 °C for 5 min / 70 °C for 15 min / 0 °C for 5 min, 
and the RA treatment was applied at a concentration of 
70 µg mL− 1 of soil suspension. Non-treated soil suspen-
sions were used as controls (C). To manipulate physical 
distance between neighboring cells, we diluted the same 
volume of soil suspensions (i.e. 1 mL of HS, RA or C) 
into 4 different volumes of water calculated in order to 
reach the same soil moisture of 30% after inoculating the 
d1, d2, d3 and d4 sterilized soil microcosms (i.e. V1 = 1.25 
mL, V2 = 9.14 mL, V3 = 28.21 mL, and V4 = 106.89 mL). 
Then, the entire volume of each diluted soil suspensions 
were inoculated into the different microcosms so that 
inoculated microcosms contained the same number of 
cells and the same species pool, with the same soil mois-
ture (Fig. 1B). The soil suspensions were thoroughly vor-
texed and equally distributed on the entire soil surface 
whatever the microcosms diameter, therefore resulting 
in a gradient of cell density per gram soil. In the control 
treatment, the estimated initial densities calculated as 
16S rRNA gene copies g− 1 dry soil were: d1 = 4.3 × 106, 
d2 = 6 × 105, d3 = 1.9 × 105 and d4 = 5.1 × 104. The micro-
cosms were then sealed with Parafilm allowing gas 
exchange in aseptic conditions and incubated at 20 °C for 
4 months. After incubation, 130 soil samples, compris-
ing soil microcosms with the C, HS, and RA communi-
ties at 4 different initial distances (n = 10 for a total of 120 
samples) and the original soils (n = 10) were used for sub-
sequent analyses. In a second step, we selected the con-
trol (C) and heat-shock (HS) communities from d1 and 
d2 microcosms (i.e. Cd1, Cd2, HSd1 and HSd2) for the 
coalescence experiment as these communities were the 
most dissimilar after the first step. For this purpose, 1.5 g 
of soil from microcosm colonized under the d1 density 
was thoroughly mixed with 1.5 g of soil from microcosm 
colonized under the d2 density into either 3 or 43  g of 
sterile soil microcosm to again obtain microcosms with 

short (d1) or long (d2) physical distancing between cells 
(Fig.  1C). Soils from Step 1 selected communities (i.e. 
Cd1, Cd2, HSd1 and HSd2) were also mixed only with 
sterile soil at the d1 and d2 densities to obtain reference 
communities. Soil microcosms from Step 2 were repli-
cated 5 times and incubated under the same condition as 
Step 1 for 90 days (a total of 60 soil microcosms).

Assessment of microbial community composition and 
diversity
Before DNA extraction, the entire soil from each micro-
cosm was manually homogenized by thorough mixing. 
DNA was extracted from 190 samples (ten original soil 
samples, 120 Step 1 microcosms and 60 Step 2 micro-
cosms) using the DNeasy PowerSoil-htp 96 well DNA 
isolation kit (Qiagen, France) according to the manufac-
turer’s instructions. To generate amplicons, a 2-step PCR 
approach was used according to [32]. The V3-V4 hyper-
variable region of the 16S rRNA gene was amplified using 
the 341F (5’-CCTACGGGRSGCAGCAG-3’) and 805R 
(5’- G A C T A C C A G G G T A T C T A A T-3’) [33]. The ampli-
con size was checked with 2% agarose gel and DNA con-
centration was estimated using Quant-IT™ dsDNA HS 
Assay kit (Invitrogen™, Carlsbad, CA, USA). Final PCR 
products were purified and their concentration normal-
ized using the SequalPrep Normalization plate kit (Invit-
rogen™, Carlsbad, CA, USA). Sequencing was performed 
on MiSeq (Illumina, 2 × 250  bp amplicons) using the 
MiSeq reagent kit v2. Demultiplexing and trimming of 
Illumina adaptors and barcodes was done with Illumina 
MiSeq Reporter software (version 2.5.1.3). Sequence 
data from soil samples were analysed using an in-house 
developed Python pipeline (available upon request). 
Briefly, 16S rRNA gene sequences were assembled using 
PEAR [34] with default settings. Further quality checks 
were conducted using the QIIME pipeline [35] and short 
sequences were removed (< 400  bp). Reference based 
and de novo chimera detection, as well as OTUs cluster-
ing were performed using VSEARCH [36] and the ade-
quate reference databases (SILVA’ representative set of 
sequences from Quast et al., 2013). The identity thresh-
olds were set at 94% based on replicate sequencing of a 
bacterial mock community [8]. Representative sequences 
for each OTU were aligned using Infernal [37] and phy-
logenetic trees were construct using FastTree [38]. Tax-
onomy was assigned using UCLUST [39] and the SILVA 
database (138.1/2020) [40]. Raw sequences were depos-
ited at the NCBI under the BioProject PRJNA883551.

Quantification of microbial communities
The abundances of the total bacterial community were 
estimated by real-time quantitative PCR (qPCR) assays. 
For each treatment, we used five equimolar mixtures 
prepared from pairs of the 10 DNA replicates extracts. 
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The total bacterial community was quantified using 16S 
rRNA primers as described by Muyzer et al. [33]. Real-
time qPCR assays were carried out in a ViiA7 (Life Tech-
nologies, USA) with a Takyon Master Mix (Eurogentec, 
France) as previously described [41]. An average PCR 
efficiency of 100.7% was found for the two independent 
runs. No-template controls gave null or negligible values. 
PCR inhibitor presence was tested by mixing soil DNA 
extracts with either control plasmid DNA (pGEM-T Easy 
Vector, Promega, France) or water. No inhibition was 
detected in any case.

Statistical analysis
Statistical analyses were conducted using R statistical 
software version 4.0.3 [42]. Bacterial α-diversity met-
rics (i.e. observed species, Simpson’s reciprocal, Shan-
non and Faith’s Phylogenetic Diversity PD from [43]) 
and Weighted Unifrac distance [44] between samples 
were calculated based on rarefied OTU Table (12,000 
sequences). Differences between treatments in gene 
copy abundances (16S rRNA) (n = 5) and the microbial 
α-diversity indices (n = 10) were tested using ANOVAs 
followed by Tukey’s honestly significant difference (HSD) 
test (p-value ≤ 0.05) using the agricolae package version 
1.3-5 [45]. Normality and homogeneity of the residual 
distribution were verified, and log-transformations 
were performed for gene copy abundances. Differences 
between Weighted Unifrac distances were tested using 
a Kruskal-Wallis test followed by a Nemenyi’s all-pairs 
comparison test (p-value ≤ 0.05) using the PMCMRplus 
package (version 1.9.4). We also performed principal 
coordinates analysis (PCoA) based on the Weighted 
Unifrac distance matrix to detect changes in the micro-
bial community structure and a Permutational multi-
variate analysis of variance (PERMANOVA) from [46] to 
detect significant differences between treatments using 
the adonis function of the vegan package (version 2.5-7). 
Pairwise post hoc tests were conducted using the func-
tion pairwise.adonis from the pairwiseAdonis package 
with Benjamini–Hochberg corrections [47].

Identification of differentially abundant OTUs in treatments
Low-abundance OTUs were filtered out by keeping 
OTUs that (i) represented > 0.01% of the sequences 
across all samples and (ii) were found in at least 60% of 
the replicates, which resulted in 792 OTUs. Due to dif-
ferences in community composition between control 
and removal treatments, OTUs with low prevalence (i.e. 
present in less than 50% of replicates within each removal 
treatment or control) were removed which resulted in 
the Step 1 experiment in 529, 306 and 468 OTUs for C, 
HS and RA communities, respectively, and in the Step 
2 experiment in 495 and 323 OTUs for C and HS com-
munities, respectively. To estimate differences in OTUs 

abundances between treatments, we used a generalized 
linear mixed model (GLMM). Such model combines 
a generalized linear model, which allow to infer linear 
regression from data that does not follow a normal distri-
bution as abundance data typically follow a Poisson dis-
tribution, with a mixed model which contain both fixed 
effects (treatment effects) and random effects (sampling 
effects). We considered that an OTU of abundance Y  fol-
lows a Poisson law of parameter Λ  as Y ∼ P (Λ), in any 
j  replicates of any i  treatment. Thus, we used the fol-
lowing model (Eq. 1):

 log (Λij) = oij + µ + αi + Zij, Zij1≤j≤5 iid ∼ N
(
0, σ2) (1)

where o  is the offset for each sample calculated as the log 
of the sample read sum, α  is the effect of the treatments, 
andZ  is the random sampling effect modeling the data 
overdispersion. For the Step 1 experiment, i = {1, . . . , 4}  
represents the density treatments of either one removal 
treatment or control, and j = {1, . . . , 10}  represents 
the replicates. For the Step 2 experiment, i = {1, . . . , 6}  
represents the coalescence and self-mixed treatments of 
either removal treatment or control, and j = {1, . . . , 5}  
represents the replicates. The analysis was performed 
using the glmer function of the lme4 package (version 
1.1–27). Subsequently, we performed a post-hoc Tukey 
test with the emmeans function of the emmeans pack-
age (version 1.6.1). Thereby, we implemented multiple 
pairwise comparisons for each OTU (i) between den-
sity treatments within each Step 1 removal treatment or 
control and (ii) between each coalesced community and 
its references communities within each Step 2 removal 
treatment or control. The p-values were then adjusted 
using the false discovery rate (FDR) method [48]. Only 
OTUs with FDR adjusted p-values below or equal to 0.05 
and with coefficient estimates higher or equal to 0.5 were 
considered significant.

Inference of co-occurrence networks
Networks were constructed based on the most abundant 
OTU count data (low-abundance OTUs filtered out) 
from the Step 1 experiment, and individually built using 
samples from each C, HS and RA communities (n = 40). 
Networks were inferred using a sparse multivariate Pois-
son log-normal (PLN) model with a latent Gaussian layer 
and an observed Poisson layer using the PLNmodels 
package, which allows to account for offsets and covari-
ates [49]. A specific normalization corresponding to the 
log-transformed number of reads in each sample was 
added as an offset in order to take into account the het-
erogeneity of sequencing depth. For each sample set, we 
constructed networks using two distinct models: a null 
model without the physical distance as a covariate (M0), 
and a full model that included physical distance as a 
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covariate (M1). The integration of the physical distance 
as a covariate in the model M1 allows the identification 
of links/nodes which are not related to this covariate. 
This comparative analysis using a dual-model approach 
aimed to identify nodes and links specifically associated 
to the effect of the physical distancing treatment. For 
each model, the best network was selected using a Sta-
bility Approach to Regularization Selection (StARS) [50], 
which performs a random subsampling of the input data 
to evaluate the robustness of the network selected edges.

Results
Manipulating cell density alters the diversity and 
composition of the bacterial community
The initial gradient in physical distance between cells 
resulted in differences in α-diversity after 120 days of 
incubation especially for the control community (C) 
and the community subjected to ramoplanin (RA) with 
the lowest diversity indices observed in the smallest 
microcosms d1 (Fig. 2A and B, Additional file 1: Fig. S1; 
TukeyHSD test, p-value < 0.05). The impact of physi-
cal distancing was weaker for the community exposed 
to heat-shock (HS) with significant differences observed 
only for the Shannon and Simpson’s Reciprocal diver-
sity indices. As expected, Principal Coordinates Analy-
sis (PCoA) of the weighted Unifrac distances revealed 
differences in community structure between the C, HS 
and RA communities due to the removal treatments 
(PERMANOVA, P < 0.001, R²= 0.69), but also a clear 
and strong clustering according to the density gradient 
(PERMANOVA, P < 0.001, R²= 0.09) (Fig.  2C and Addi-
tional file 1: Table S1). Thus, significant differences were 
observed between d1 and all the other initial distances 
for the C, RA and HS communities. We also observed an 
effect of the interaction between the removal and den-
sity treatments (PERMANOVA, P < 0.001, R²= 0.05) with 
significant differences in community structure between 
d2 and d4 for the C community, but not the RA and HS 
communities (Additional file 1: Table S2). Clostridia, 
Gemmatimonadetes and Gamma-protobacteria were 
mostly affected in the C and RA communities, while the 
largest changes were observed for the Clostridia, Alpha-
proteobacteria and Actinobacteria in the HS community 
(Fig.  2D). We also quantified the 16S rRNA gene copy 
numbers using qPCRs as a proxy for bacterial abundance 
and found the highest number of bacteria at the short-
est initial physical distance (d1) in the C community 
(6.7 × 108 gene copies g− 1 dry soil), while no differences 
were observed between d2, d3 and d4 (3.6 × 108, 3.7 × 108 
and 4.3 × 108 gene copies g− 1 dry soil, respectively; 
Additional file 1: Fig. S2). Similarly, the abundances 
of bacterial communities subjected to heat-shock and 
ramoplanin were barely affected by physical distancing. 
These similar numbers of 16S rRNA gene copy per gram 

of soil, which were in the same range than in the natural 
soil (4.72 × 108 gene copies g− 1 dry soil), also indicate that 
inoculated communities had completely colonized the 
microcosms and reached the soil carrying capacity what-
ever their volumes.

We expected the shifts in biotic interactions along the 
gradient in physical distance to be mirrored by changes 
in OTUs relative abundances, with a higher number of 
OTUs affected at high initial cell density (i.e. short physi-
cal distances). To identify the OTUs affected by our cell 
physical distancing approach within the C, HS and R 
communities, we used a generalized linear mixed model 
estimating significant shifts in the relative abundance of 
each of the dominant OTUs between density treatments 
(Fig. 3). Our analysis showed that in total 73%, 41% and 
52% of the dominant OTUs were significantly affected by 
the density treatment for the C, HS and RA communi-
ties, respectively (FDR adjusted p-value ≤ 0.05, Additional 
file 1: Table S3). These differences were mostly observed 
between the highest cell density (d1) and all other den-
sities. We also found that the number of OTUs with 
decreasing relative abundance between densities was 
about two time higher than the number of OTUs with 
increasing relative abundances, whatever the commu-
nity (Fig. 3A). OTUs belonged to Gamma-Proteobacteria 
and Clostridia were mostly positively affected by shorter 
physical distance, while members of Bacilli, Actinobac-
teria and Alpha-proteobacteria were negatively affected 
(Additional file 1: Fig. S3). Overall, the magnitude of the 
changes in the relative abundances of the significantly 
affected OTUs was also influenced by the physical dis-
tancing and by community memberships. Thus, the mag-
nitude of the changes in relative abundances was stronger 
for positively impacted OTUs (blue, increasing relative 
abundances) than for negatively impacted ones (red, 
decreasing relative abundances) in d1 compared to the 
other distances for the HS community, while the opposite 
was found for C and RA communities (Fig. 3B).

Manipulating cell density leads to modifications in 
co-occurrence networks
To further explore to which extent interactions between 
bacterial OTUs were influenced by cell density within 
each community (i.e. control, heat-shock and ramo-
planin), we used the initial physical distance as a covari-
ate (M1) for inferring microbial co-occurrence networks, 
which comprise only associations between OTUs that 
were not caused by the effects of physical distancing. 
Comparison of this network to the microbial co-occur-
rence network built without a covariate (M0 comprising 
all associations between OTUs) allowed to identify the 
links between OTUs specifically caused by the effects of 
physical distancing [49]. We found that 20.8% of nodes 
and 51.8% of links were specifically related to the effect of 
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Fig. 2 Differences in bacterial community diversity, structure and composition across density treatments after the step 1 experiment. (A) Observed spe-
cies and (B) Simpson’s reciprocal indices are shown (mean ± s.e.) in the control (C), heat-shock (HS) and ramoplanin (RA) communities within the density 
gradient (d1, d2, d3 and d4). Different letters indicate significant differences according to TukeyHSD test (p-value < 0.05). (C) Principal Coordinates Analysis 
(PCoA) of the weighted UniFrac distance matrix of 16S rRNA gene amplicons showing shifts in the structures between (C), (HS) and (RA) communities 
and within the density gradient. The different treatments are represented by different colors and symbols as specified in the legend. (D) Bacterial com-
munity composition across the density gradient for the three different communities. Relative abundances are shown at the phylum and class levels and 
expressed as a percentage of the total number of OTUs
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the physical distancing for the C community and 24.5% of 
nodes and 43.3% of links for the HS community. In con-
trast, 87% of nodes and 97.3% of links were related to the 
initial physical distance for the RA community (Fig. 4A). 
Negative links constituted a higher proportion of links 
that were dependent on physical distancing in the net-
works inferred from the C (M0: 17.68% vs. M1: 2.98%) 
and RA communities (M0: 9.27% vs. M1: 0%), com-
pared to the HS community (M0: 12.87% vs. M1: 12.53%) 
(Fig. 4B). Among the negative links related to the initial 
physical distance, 90% were connecting Clostridia with 
either Proteobacteria, Longimicrobia or Bacteroidia in 
the C network while 72% of negative links in the HS com-
munity network were between Clostridia and Bacilli, and 
13% between Clostridia and Actinobacteria (Additional 
file 1: Fig. S4). The depletion of Clostridia in the RA com-
munity resulted in shifts in the taxa associations with the 

highest percentage of negative links (53%) connecting 
Delta-proteobacteria with mainly Alpha-proteobacteria, 
Gamma-proteobacteria, Bacilli and Bacteroidia. At the 
phylum or class taxonomic level, the links between nodes 
belonging to the same pair of taxa were in some cases 
both positive and negative (Additional file 1: Fig. S4). 
However, identifying the nodes corresponding to OTUs 
exhibiting significant changes in relative abundances 
allowed to distinguish different families within phylum/
classes, resulting in a clearer effect of physical distanc-
ing (Additional file 1: Fig. S5). For example, both nega-
tive and positive links were observed between the nodes 
belonging to Clostridia and Bacilli classes in the heat-
shock communities (Additional file 1: Fig. S4B), while 
we noted only negative links between the Gracilibactera-
ceae (Clostridia) and Paenibacillaceae (Bacilli) families, 
as well as only positive links between Gracilibacteraceae 

Fig. 3 Changes in the relative abundance of the most abundant OTUs related to the physical distancing. Significantly differential abundant OTUs be-
tween density treatments (d1, d2, d3 and d4) as identified using a generalized linear mixed model for the control (C), heat-shock (HS) and ramoplanin (RA) 
communities. (A) Percentage of OTUs exhibiting significantly increasing/decreasing relative abundances for each pairwise comparison between density 
treatments (where vs. means > or <). (B) Changes in the relative abundances of significantly affected OTUs as represented by the coefficient estimates 
obtained by the generalized linear mixed model for each OTU within each comparison and used as a measure of the effect size. Median of the coefficient 
estimates are indicated for each comparison
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and Bacillaceae (Bacilli) families (Additional file 1: Fig. 
S5B).

Coalescence outcomes between communities assembled 
under different initial physical distances
To determine the extent to which the initial gradient in 
physical distance selected OTUs with different competi-
tive abilities, we focused on the C and HS communities 
as well as the d1 and d2 densities for performing a coales-
cence experiment. The same volumes of soil colonized 
under the d1 and d2 initial densities were mixed together 

with two different volumes of sterile soil to again obtain 
microcosms with short (d1) or long (d2) physical distanc-
ing between cells (Fig. 1C). As reference communities, we 
also used the soils colonized under the d1 and the d2 ini-
tial densities but mixed separately with sterile soil at high 
(d1) or low (d2) densities. After 90 days of soil recoloni-
zation, we quantified the outcome of community coales-
cence by comparing similarities between each reference 
community and the coalesced community for both densi-
ties using weighted Unifrac distances (Additional file 1: 
Fig. S6 and Table S4). For the C communities, we found 

Fig. 4 Effects of the physical distancing approach on the microbial co-occurrence networks. (A) The Venn diagrams show the number of shared/unique 
links or nodes between co-occurrence networks inferred without covariate (M0) or with the initial physical distance as covariate (M1). The nodes and links 
highlighted in bold correspond to those specifically related to the effect of the physical distancing treatment when comparing the M0 and M1 models. (B) 
For each network model and community, the number and proportion (out of the total number of links per model network) of positive (blue) and negative 
(red) links are represented. Links represent partial correlations ρ and they are colored blue if ρ > 0 and red if ρ < 0
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that the coalesced communities (Cd1 + Cd2) were more 
similar to the Cd2 than to the Cd1 reference community 
whatever the density (Fig.  5A). This coalescence asym-
metry was confirmed by a higher proportion of OTUs 
originating from the Cd2 reference community in the 
coalesced community at both densities (Fig. 5B). Differ-
ential abundance analysis between coalesced and refer-
ence communities also showed a higher percentage of 
impacted OTUs when comparing the coalesced commu-
nity to the reference community Cd1 (30.90% and 23.43% 
in d1 and d2, respectively; FDR adjusted p-value ≤ 0.05) 
than to the reference community Cd2 (13.93% and 12.92% 
in d1 and d2, respectively; FDR adjusted p-value ≤ 0.05) 
(Additional file 1: Table S5). In contrast, mixing HS com-
munities that had colonized the soil under the d1 and d2 
densities resulted in coalesced communities that were 
equally similar to the HSd1 and HSd2 reference com-
munities regardless of the density (Fig.  5C). The similar 
percentage of OTUs shared between the reference and 
coalesced HS communities also indicated a symmetric 
coalescence (i.e. none of the source community is pre-
dominant in the coalesced community) (Fig.  5D). No 
effect of the reference community was observed by differ-
ential abundance analysis on the outcome of coalescence 
events between the HS communities (13% and 15.17% of 
affected OTUs for HSd1 and HSd2, respectively in d1; 

6.81% and 7.43% for HSd1 and HSd2, respectively in d2; 
FDR adjusted p-value ≤ 0.05) (Additional file 1: Table S5). 
However, we found an effect of the physical distance on 
the outcome of coalescence events between the HSd1 and 
HSd2 communities only, with the coalesced community 
being more similar to the reference communities in d2 
than in d1. This importance of physical distancing for the 
HS community during coalescence was supported by the 
differential abundance analysis showing that more OTUs 
were significantly affected at high (average of 14.08% in 
d1; FDR adjusted p-value ≤ 0.05) than at low densities 
(7.12% in d2; FDR adjusted p-value ≤ 0.05) whatever the 
reference community (Additional file 1: Table S5).

Interestingly, the generalized linear mixed model also 
revealed non additive-effects with a few OTUs exhibit-
ing significantly higher or lower relative abundances in 
the coalesced communities than in both reference com-
munities (Additional file 1: Fig. S7 and S8). Thus, out of 
the 343 OTUs exhibiting significantly different relative 
abundances between the coalesced and reference com-
munities, we found 29 OTUs showing either synergis-
tic or antagonistic non-additive effects in the coalesced 
community at high cell density (d1), and only 9 OTUs at 
low cell density (d2).

Fig. 5 Differences in bacterial community structure and composition between coalesced and reference communities. Weighted UniFrac distances be-
tween coalesced and reference communities during the step 2 experiment are represented for the control (A) and heat-shock (C) (mean ± s.e.). Different 
letters above the bars indicate significant differences according to Nemenyi’s all-pairs comparison test (p-value < 0.05). The Venn diagrams show the num-
ber of shared/unique OTUs between the coalesced and references communities for the control (B) and heat-shock (D) at high (d1) and low densities (d2)
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Discussion
Although mathematical models have shown that the rela-
tive fitness of individuals strongly depends on the den-
sity of surrounding neighbors [22, 24], little is known 
about how biotic interactions are influenced by physi-
cal distance between cells in complex environments and 
their role in microbial community assembly. Here, using 
removal treatments [8], we generated three microbial 
inoculums differing in community membership that 
were then subjected to a physical distancing approach in 
order to assess to what extent microbial communities are 
shaped by biotic interactions between neighboring cells. 
As expected [8], the HS treatment resulted in a decrease 
in the relative abundances of Gram-negative bacteria, 
such as γ-Proteobacteria (38% in the control versus 5.5% 
in the HS treatment). The effect of the RA treatment on 
microbial communities was less pronounced, yet it led to 
a decrease in the relative abundances of Gram-positive 
bacteria, specifically those belonging to Clostridia (4.12% 
in the control versus 0.6% in the RA treatment). Inocu-
lation of the same microbial pools in microcosms con-
taining different volumes of the same sterilized soil but 
with the same soil depth and humidity allowed us to con-
trol for potential confounding abiotic factors that could 
interfere with the assessment of the effects of physical 
distancing. However, our experimental design doesn’t 
allow controlling for the distribution of the different spe-
cies, and especially of the rare ones in the community. If 
this initial species distribution in the microcosms is of 
importance in determining the outcome of interactions 
between species and, consequently, bacterial commu-
nity assembly [43], we should expect a high stochasticity, 
which increases with physical distancing if species are 
not evenly distributed. In contrast, we observed a good 
reproducibility between the 10 replicates whatever the 
initial distance.

Manipulation of the initial physical distances between 
bacterial cells successfully highlighted the importance of 
biotic interactions for bacterial community assembly with 
at least 41% of the dominant OTUs being affected by cell 
density. Thus, physical distancing modified the outcome 
of soil colonization with significant differences both in 
community diversity and composition that were related 
to the initial densities. Thus, we found no or minor dif-
ferences among the initial distances d2, d3 and d4, while 
the lowest bacterial diversity was observed when the 
initial physical distance was the shortest (d1). This is in 
agreement with the classical competition theory, which 
predicts that environments with higher competition tend 
to have lower species richness [51]. The higher richness 
and evenness observed at low initial cell density also 
provides empirical support for the existence of compe-
tition-colonization tradeoffs that could help maintain-
ing bacterial diversity in soil [52]. The identification by 

differential abundance analysis of a higher percentage 
of dominant OTUs with decreasing (28%) than increas-
ing relative abundance (14%) at high cell density suggests 
that reducing the physical distance during soil recoloni-
zation increased negative rather than positive interac-
tions. Although cooperation is thought to be a common 
interaction between species [53], our results support 
previous studies based on experimental approaches high-
lighting the importance of competitive interactions in 
shaping microbial communities [6, 27, 54]. The effect of 
physical distancing was not linear but threshold based 
with a stronger effect in d1 versus the other densities and 
to a lesser extent, in d2 versus d4 (i.e. scenario 3 in the 
Fig. 1A). This could be explained by the ability of bacte-
ria to detect local cell density through quorum sensing, 
which can for example repress bacterial competition sys-
tems including secretion systems until a threshold den-
sity has been reached [31, 55, 56]. It has also been showed 
that at lower densities, bacteria have more opportuni-
ties during range expansion to form established clonal 
patches, which are more protected from competitors [57, 
58]. Inferring microbial networks with and without the 
initial density gradient as covariate allowed us to iden-
tify the microbial associations that were directly related 
to the effect of physical distancing. In any case, since we 
used the same soil, which was incubated under the same 
conditions, abiotic filtering was intrinsically limited by 
our approach. Overall, a higher proportion of nega-
tive links explained by the initial density gradient in the 
inferred microbial co-occurrence networks further sup-
ports that competitive interactions were more affected 
by physical distancing for C and RA communities com-
pared to the HS community. Among the co-occurrence 
networks, we found that Clostridia were often negatively 
associated with Proteobacteria and Bacilli and that these 
associations were specifically related to physical distanc-
ing. This is consistent with previous findings reporting 
that, in soil, members of Clostridia could produce antimi-
crobial compounds which negatively affected the growth 
of species belonging to Pseudomonas and Bacillus [59]. 
However, future studies are required for understanding 
the competition mechanisms underpinning the microbial 
interactions highlighted in our work.

The generation of three different microbial communi-
ties using removal treatments allowed us to character-
ize to which extent the effect of physical distancing was 
dependent on community composition. Specifically, we 
found a higher percentage of OTUs with decreasing fit-
ness in the C- and RA-communities compared to the HS 
community, which was concomitant with a higher num-
ber of negative links related to the physical distancing in 
C and RA bacterial networks. Inferring networks with 
or without the initial physical distance as a qualitative 
covariate also revealed that RA community network was 



Page 12 of 14Romdhane et al. Environmental Microbiome           (2024) 19:18 

the most responsive to the initial neighboring cell den-
sity. This could be due to the enrichment of Gram-neg-
ative bacteria (Fig. 2d) after exposure to ramoplanin, an 
antibiotic with bactericidal activity against Gram-positive 
bacteria. Accordingly, many secretion systems involving 
cell contact or cell-cell communication through quorum 
sensing and playing a pivotal role in bacterial competi-
tion have been described only in Gram-negative bacteria 
[60]. Taken together, our results suggests that physical 
distancing could differentially modulate competitiveness 
between surrounding species depending on community 
membership.

To further explore how physical distancing affects 
interactions within microbial communities, we used a 
coalescence experiment based on the mixing of com-
munities that assembled at high (d1) and low (d2) cell 
densities. We found that coalescence events resulted 
in distinct patterns for C and HS communities with 
the source community being more important for the 
assembly of the C-coalesced communities while the 
physical distance was more important for that of the 
HS-coalesced communities. While we hypothesized that 
increasing physical distance will favor poor competitors, 
the Cd2 source community was dominating over the Cd1 
source community within the C-coalesced communities 
assembled at both high and low densities. This scenario 
can be explained with the findings of Lechón-Alonso 
et al. [61] who showed that the less competitive parent 
communities can dominate after coalescence when they 
are more cooperative because of their superior ability 
to deplete resources. Conversely, we found a symmetric 
coalescence for the HS communities indicating that the 
HSd1 and HSd2 communities were equally competitive, 
which suggests that physical distancing during step1 
experiment had little effect on their competitiveness. 
This is supported by the much weaker effect of physical 
distancing on the HS than on C communities during the 
step1 experiment with about 36% and 69% of significantly 
affected OTUs between d1 and d2, respectively. This lack 
of “home field advantage” during coalescence with the 
communities selected at the d2 density being equally or 
more competitive than the d1 community even when 
mixed at the d1 density suggests that the observed differ-
ences in competitiveness were due to biotic rather than 
abiotic filtering during the first step of physical distanc-
ing approach.

Using the coalescence approach, we also identified 
OTUs with significantly higher or lower relative abun-
dances in the coalesced communities compared to the 
reference communities. These antagonistic and syn-
ergistic effects resulting from the mixing of partly dif-
ferent communities could be due to shifts in the initial 
abundance of the interacting cells in the coalesced com-
munities [62]. Alternatively, the introduction during the 

coalescence of new species present only in one of the par-
ent communities may have modified the existing inter-
action in the other parent community. Accordingly, the 
importance of such higher-order interactions is increas-
ingly recognized in microbial community assembly [63]. 
Interestingly, we found that these antagonistic and syn-
ergistic interactions also occur more often under short 
than long physical distancing, which further supports the 
importance of neighboring cell density for biotic interac-
tion frequency.

Conclusions
In summary, by experimentally manipulating the physi-
cal distance between neighboring cells, our study showed 
the importance of biotic interactions in microbial com-
munity assembly. Reducing the initial distances between 
cells led to a loss of bacterial diversity, with at a higher 
percentage of OTUs exhibiting a decrease than an 
increase in relative abundance, therefore suggesting a 
predominance of negative interactions. However, the dif-
ferential effect of physical distancing observed between 
the generated inoculums suggests that community mem-
bership either modulates the importance of biotic inter-
actions in community assembly or the extent to which 
biotic interactions are dependent on neighboring cell 
density. Further studies are therefore needed to resolve 
microbe-microbe interactions within complex communi-
ties, which is crucial for steering microbial communities 
in the environment.
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Supplementary Material 1: Additional file 1. Table S1. Analysis of 
differences between treatments based on the weighted Unifrac distances. 
PERMANOVA results assessing differences in the bacterial community 
structure linked to removal treatments, density treatments and their 
interactions using weighted UniFrac distance of step1 experiment. Table 
S2. Analysis of differences between density treatments based on the 
weighted Unifrac distances. Pairwise comparisons assessing differences 
in the bacterial community structure related to the density treatment in 
the control (C), heat-shock (HS) and ramoplanin (RA) communities using 
the weighted UniFrac distances with Benjamini–Hochberg corrections 
for multiple testing. Table S3. Identification of significantly affected OTUs 
for step1 experiment. Results from differential abundance analysis of 
OTUs within each community using a generalized linear mixed model 
(FDR adjusted p-value ≤ 0.05). Table S4. Analysis of differences between 
treatments based on the weighted Unifrac distances. PERMANOVA results 
assessing differences in the bacterial community structure linked to the 
community, density and their interactions using weighted UniFrac dis-
tance of step2 experiment. Table S5. Identification of significantly affected 
OTUs for step2 experiment. Results of differential abundance analysis of 
OTUs between coalesced and references communities using a generalized 
linear mixed model (FDR adjusted p-value ≤ 0.05). Fig. S1 Diversity levels 
of the bacterial community after step 1 experiment. The Faith’s phyloge-
netic diversity (A) and Shannon (B) indices are shown (mean ± s.e.) in the 
control (C), heat-shock (HS) and ramoplanin (RA) communities within the 
density gradient (d1, d2, d3 and d4). Different letters indicate significant 
differences according to TukeyHSD test (p-value < 0.05). Fig. S2 Quantifica-
tion of the total bacterial community. Abundances of total bacteria (16 S 
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rRNA) in the control (C), heat-shock (HS) and ramoplanin (RA) communi-
ties within the density gradient (d1, d2, d3 and d4) after Step 1 experi-
ment (mean ± s.e. of log10-transformed data expressed as gene copy g-1 
dry soil). Different letters above the bars indicate significant differences 
according to TukeyHSD test (p-value < 0.05). Fig. S3 Phylogenetic relation-
ships and distribution of significantly affected OTUs by the physical dis-
tancing approach. Significantly increasing/decreasing relative abundances 
of OTUs between density treatments according to the generalized linear 
mixed model for the control, heat-shock and ramoplanin communities. 
Changes in the relative abundances as measured by the coefficient esti-
mates (effect size) are represented by the blue-to-red color. The affiliation 
of OTUs at the phylum or class levels is indicated by different colors on the 
internal ring. Fig. S4 Effects of the physical distancing approach on the 
microbial co-occurrence networks. Number of positive (blue) and negative 
(red) links that are related to the physical distance (M0-M1) for the control 
(A), heat-shock (B) and ramoplanin (C) communities. The Venn Diagrams 
show the number of links that are related to the physical distance (M0-
M1). For visualization purpose, only taxa with number of links higher than 
the average number of neighbors in each community network (M0) was 
represented. Fig. S5 Nodes related to physical distancing in co-occurrence 
networks and significantly affected by the physical distancing approach. 
Number of positive (blue) and negative (red) links between nodes that 
are related to physical distance in co-occurrence networks (M0-M1) and 
exhibiting significant changes in relative abundances as determined by 
the differential abundance analysis for the control (A), heat-shock (B) and 
ramoplanin (C) communities. Fig. S6 Differences in bacterial commu-
nity composition across treatments for the step2 experiment. Principal 
Coordinates Analysis (PCoA) of the weighted UniFrac distance matrix of 
16 S rRNA gene amplicons of coalesced and references communities for 
the control (A) and heat-shock (B) at high (d1) and low densities (d2). The 
different treatments are represented by different colors and symbols as 
specified in the legend. Fig. S7 Identification of OTUs with significantly 
lower or higher relative abundances in the coalesced communities 
compared to the reference communities for the control. OTUs exhibit-
ing significant differences in the coalesced communities compared to 
the reference communities as identified by the generalized linear mixed 
model at high (d1) and low densities (d2). Relative abundances are shown 
at the family level and the affiliation of OTUs are indicated by different 
colors at the phylum or class levels. Fig. S8 Identification of OTUs with 
significantly lower or higher relative abundances in the coalesced commu-
nities compared to the reference communities for the heat shock. OTUs 
exhibiting significant differences in the coalesced communities compared 
to the reference communities as identified by the generalized linear mixed 
model at high (d1) and low densities (d2). Relative abundances are shown 
at the family level and the affiliation of OTUs are indicated by different 
colors at the phylum or class levels.

Acknowledgements
This research was funded by the ISITE-UBFC senior fellowship, grant RA19016.
AEC.IS. The authors would like to thank Arnaud Mounier for his valuable help 
with the bioinformatics analysis.

Author contributions
S.R., A.S. and L.P. designed the study. S.R., S.H., M-C.B. and D.B. performed the 
experiments and contributed to data collection. S.R., S.H., and A.S. analyzed 
the data and S.R. drafted the manuscript together with L.P. All authors read 
and approved the final manuscript.

Data availability
Raw sequences were deposited at the NCBI under the accession number 
BioProject PRJNA883551. All data are available in the main text or the 
supplementary information.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 9 October 2023 / Accepted: 3 March 2024

References
1. van der Heijden MGA, Bardgett RD, van Straalen NM. The unseen major-

ity: soil microbes as drivers of plant diversity and productivity in terrestrial 
ecosystems. Ecol Lett. 2008;11:296–310.

2. Falkowski PG, Fenchel T, Delong EF. The microbial engines that drive Earth’s 
biogeochemical cycles. Science. 2008;320:1034–9.

3. Bardgett RD, van der Putten WH. Belowground biodiversity and ecosystem 
functioning. Nature. 2014;515:505–11.

4. Fierer N. Embracing the unknown: disentangling the complexities of the soil 
microbiome. Nat Rev Microbiol. 2017;15:579–90.

5. Vos M, Wolf AB, Jennings SJ, Kowalchuk GA. Micro-scale determinants of 
bacterial diversity in soil. FEMS Microbiol Rev. 2013;37:936–54.

6. Foster KR, Bell T. Competition, not cooperation, dominates interactions 
among culturable microbial species. Curr Biol. 2012;22:1845–50.

7. Ratzke C, Barrere J, Gore J. Strength of species interactions determines biodi-
versity and stability in microbial communities. Nat Ecol Evol. 2020;4:376–83.

8. Romdhane S, Spor A, Aubert J, Bru D, Breuil M-C, Hallin S, et al. Unraveling 
negative biotic interactions determining soil microbial community assembly 
and functioning. ISME J. 2022;16:296–306.

9. Griffin AS, West SA, Buckling A. Cooperation and competition in pathogenic 
bacteria. Nature. 2004;430:1024–7.

10. Stubbendieck RM, Straight PD. Multifaceted interfaces of bacterial competi-
tion. J Bacteriol. 2016;198:2145–55.

11. Tyc O, van den Berg M, Gerards S, van Veen JA, Raaijmakers JM, de Boer W, et 
al. Impact of interspecific interactions on antimicrobial activity among soil 
bacteria. Front Microbiol. 2014;5:567.

12. Morris BEL, Henneberger R, Huber H, Moissl-Eichinger C. Microbial syntrophy: 
interaction for the common good. FEMS Microbiol Rev. 2013;37:384–406.

13. Raynaud X, Nunan N. Spatial ecology of bacteria at the microscale in soil. 
PLoS ONE. 2014;9:e87217.

14. Crowley PH, Davis HM, Ensminger AL, Fuselier LC, Kasi Jackson J. Nicholas 
McLetchie D. A general model of local competition for space. Ecol Lett. 
2005;8:176–88.

15. Lloyd DP, Allen RJ. Competition for space during bacterial colonization of a 
surface. J R Soc Interface. 2015;12:0608.

16. Hibbing ME, Fuqua C, Parsek MR, Peterson SB. Bacterial competition: surviv-
ing and thriving in the microbial jungle. Nat Rev Microbiol. 2010;8:15–25.

17. Madsen JS, Sørensen SJ, Burmølle M. Bacterial social interactions and 
the emergence of community-intrinsic properties. Curr Opin Microbiol. 
2018;42:104–9.

18. Tilman D. Competition and biodiversity in spatially structured habitats. Ecol-
ogy. 1994;75:2–16.

19. Cadotte MW, Mai DV, Jantz S, Collins MD, Keele M, Drake JA. On testing the 
competition-colonization Trade‐Off in a multispecies Assemblage. Am Nat. 
2006;168:704–9.

20. Lee H, Gore J, Korolev KS. Slow expanders invade by forming dented fronts 
in microbial colonies. Proceedings of the National Academy of Sciences. 
2022;119:e2108653119.

21. Legault G, Bitters ME, Hastings A, Melbourne BA. Interspecific competition 
slows range expansion and shapes range boundaries. Proceedings of the 
National Academy of Sciences. 2020;117:26854–60.

22. Stubbendieck RM, Vargas-Bautista C, Straight PD. Bacterial communities: 
interactions to Scale. Front Microbiol. 2016;7:1234.

23. Lee J-Y, Haruta S, Kato S, Bernstein HC, Lindemann SR, Lee D-Y, et al. Predic-
tion of neighbor-dependent Microbial interactions from Limited Population 
Data. Front Microbiol. 2020;10:3049.

24. Dal Co A, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M. Short-range interac-
tions govern the dynamics and functions of microbial communities. Nat Ecol 
Evol. 2020;4:366–75.

25. Pérez-Gutiérrez R-A, López-Ramírez V, Islas Á, Alcaraz LD, Hernández-
González I, Olivera BCL, et al. Antagonism influences assembly of a Bacillus 
guild in a local community and is depicted as a food-chain network. ISME J. 
2013;7:487–97.



Page 14 of 14Romdhane et al. Environmental Microbiome           (2024) 19:18 

26. Williams P, Winzer K, Chan WC, Cámara M. Look who’s talking: communication 
and quorum sensing in the bacterial world. Philosophical Trans Royal Soc B: 
Biol Sci. 2007;362:1119–34.

27. Kehe J, Ortiz A, Kulesa A, Gore J, Blainey PC, Friedman J. Positive interactions 
are common among culturable bacteria. Sci Adv. 2021;7:eabi7159.

28. Saxena D, Maitra R, Bormon R, Czekanska M, Meiers J, Titz A, et al. Tackling the 
outer membrane: facilitating compound entry into Gram-negative bacterial 
pathogens. Npj Antimicrob Resist. 2023;1:1–22.

29. Russell AB, Peterson SB, Mougous JD. Type VI secretion system effectors: 
poisons with a purpose. Nat Rev Microbiol. 2014;12:137–48.

30. Miller MB, Bassler BL. Quorum sensing in bacteria. Annu Rev Microbiol. 
2001;55:165–99.

31. Darch SE, West SA, Winzer K, Diggle SP. Density-dependent fitness benefits in 
quorum-sensing bacterial populations. Proceedings of the National Academy 
of Sciences. 2012;109:8259–63.

32. Berry D, Ben Mahfoudh K, Wagner M, Loy A. Barcoded primers used in mul-
tiplex amplicon pyrosequencing bias amplification. Appl Environ Microbiol. 
2011;77:7846–9.

33. Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial popu-
lations by denaturing gradient gel electrophoresis analysis of polymerase 
chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 
1993;59:695–700.

34. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina 
paired-end reAd mergeR. Bioinformatics. 2014;30:614–20.

35. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, 
et al. QIIME allows analysis of high-throughput community sequencing data. 
Nat Methods. 2010;7:335–6.

36. Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open 
source tool for metagenomics. PeerJ. 2016;4:e2584.

37. Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. 
Bioinformatics. 2013;29:2933–5.

38. Price MN, Dehal PS, Arkin AP. FastTree 2– approximately maximum-likelihood 
trees for large alignments. PLoS ONE. 2010;5:e9490.

39. Edgar RC. Search and clustering orders of magnitude faster than BLAST. 
Bioinformatics. 2010;26:2460–1.

40. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA 
ribosomal RNA gene database project: improved data processing and web-
based tools. Nucleic Acids Res. 2013;41:D590–6.

41. Bru D, Ramette A, Saby NPA, Dequiedt S, Ranjard L, Jolivet C, et al. Determi-
nants of the distribution of nitrogen-cycling microbial communities at the 
landscape scale. ISME J. 2011;5:532–42.

42. R Core Team. R: A language and environment for statistical comput-
ing. R Foundation for Statistical Computing, Vienna, Austria. Avail-
able from: https://www.eea.europa.eu/data-and-maps/indicators/
oxygen-consuming-substances-in-rivers/r-development-core-team-2006.

43. Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv. 
1992;61:1–10.

44. Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R. UniFrac: an 
effective distance metric for microbial community comparison. ISME J. 
2011;5:169–72.

45. de Mendiburu F, agricolae. Statistical Procedures for Agricultural Research 
version 1.3-5. 2019. Available from: https://rdrr.io/cran/agricolae/.

46. Anderson MJ. A new method for non-parametric multivariate analysis of vari-
ance. Austral Ecol. 2001;46:26–32.

47. Martinez Arbizu P, pairwiseAdonis. Pairwise multilevel comparison using 
adonis. R package version 0.4. 2020. Available from: https://github.com/
pmartinezarbizu/pairwiseAdonis.

48. Benjamini Y, Hochberg Y. Controlling the false Discovery rate: a practical and 
powerful Approach to multiple testing. J Roy Stat Soc: Ser B (Methodol). 
1995;57:289–300.

49. Chiquet J, Robin S, Mariadassou M. Variational Inference for sparse network 
reconstruction from count data. Proceedings of the 36th International Con-
ference on Machine Learning. PMLR, pp. 1162–1171.

50. Liu H, Roeder K, Wasserman L. Stability Approach to Regularization Selection 
(StARS) for high dimensional graphical models. Adv Neural Inf Process Syst. 
2010;24:1432–40.

51. Becker J, Eisenhauer N, Scheu S, Jousset A. Increasing antagonistic interac-
tions cause bacterial communities to collapse at high diversity. Ecol Lett. 
2012;15:468–74.

52. Livingston G, Matias M, Calcagno V, Barbera C, Combe M, Leibold MA, et al. 
Competition–colonization dynamics in experimental bacterial metacommu-
nities. Nat Commun. 2012;3:1234.

53. West SA, Griffin AS, Gardner A. Evolutionary explanations for cooperation. 
Curr Biol. 2007;17:R661–672.

54. Ghoul M, Mitri S. The Ecology and Evolution of Microbial Competition. Trends 
Microbiol. 2016;24:833–45.

55. Papenfort K, Bassler B. Quorum-sensing Signal-Response systems in Gram-
negative Bacteria. Nat Rev Microbiol. 2016;14:576–88.

56. Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial quo-
rum sensing and Microbial Community interactions. mBio. 2018;9. https://
doi.org/10.1128/mbio.02331-17.

57. Mavridou DAI, Gonzalez D, Kim W, West SA, Foster KR. Bacteria use 
collective behavior to Generate Diverse Combat Strategies. Curr Biol. 
2018;28:345–e3554.

58. Granato ET, Meiller-Legrand TA, Foster KR. The Evolution and Ecology of 
Bacterial Warfare. Curr Biol. 2019;29:R521–37.

59. Pahalagedara ASNW, Flint S, Palmer J, Subbaraj A, Brightwell G, Gupta TB. 
Antimicrobial activity of Soil Clostridium Enriched Conditioned Media against 
Bacillus mycoides, Bacillus cereus, and Pseudomonas aeruginosa. Front 
Microbiol. 2020;11:608998.

60. Costa TRD, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, et 
al. Secretion systems in Gram-negative bacteria: structural and mechanistic 
insights. Nat Rev Microbiol. 2015;13:343–59.

61. Lechón-Alonso P, Clegg T, Cook J, Smith TP, Pawar S. The role of competition 
versus cooperation in microbial community coalescence. PLoS Comput Biol. 
2021;17:e1009584.

62. Wright ES, Vetsigian KH. Inhibitory interactions promote frequent bistability 
among competing bacteria. Nat Commun. 2016;7:11274.

63. Mickalide H, Kuehn S. Higher-Order Interaction between Species inhibits 
Bacterial Invasion of a phototroph-predator Microbial Community. Cell Syst. 
2019;9:521–e53310.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006
https://www.eea.europa.eu/data-and-maps/indicators/oxygen-consuming-substances-in-rivers/r-development-core-team-2006
https://rdrr.io/cran/agricolae/
https://github.com/pmartinezarbizu/pairwiseAdonis
https://github.com/pmartinezarbizu/pairwiseAdonis
https://doi.org/10.1128/mbio.02331-17
https://doi.org/10.1128/mbio.02331-17

	Manipulating the physical distance between cells during soil colonization reveals the importance of biotic interactions in microbial community assembly
	Abstract
	Background
	Methods
	Soil sampling and experimental design
	Assessment of microbial community composition and diversity
	Quantification of microbial communities
	Statistical analysis
	Identification of differentially abundant OTUs in treatments
	Inference of co-occurrence networks


	Results
	Manipulating cell density alters the diversity and composition of the bacterial community
	Manipulating cell density leads to modifications in co-occurrence networks
	Coalescence outcomes between communities assembled under different initial physical distances

	Discussion
	Conclusions
	References


