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Abstract
Background Soil microbial communities are difficult to measure and critical to soil processes. The bulk soil 
microbiome is highly diverse and spatially heterogeneous, which can make it difficult to detect and monitor the 
responses of microbial communities to differences or changes in management, such as different crop rotations in 
agricultural research. Sampling a subset of actively growing microbes should promote monitoring how soil microbial 
communities respond to management by reducing the variation contributed by high microbial spatial and temporal 
heterogeneity and less active microbes. We tested an in-growth bag method using sterilized soil in root-excluding 
mesh, “sterile sentinels,” for the capacity to differentiate between crop rotations. We assessed the utility of different 
incubation times and compared colonized sentinels to concurrently sampled bulk soils for the statistical power to 
differentiate microbial community composition in low and high diversity crop rotations. We paired this method 
with Oxford Nanopore MinION sequencing to assess sterile sentinels as a standardized, fast turn-around monitoring 
method.

Results Compared to bulk soil, sentinels provided greater statistical power to distinguish between crop rotations for 
bacterial communities and equivalent power for fungal communities. The incubation time did not affect the statistical 
power to detect treatment differences in community composition, although longer incubation time increased total 
biomass. Bulk and sentinel soil samples contained shared and unique microbial taxa that were differentially abundant 
between crop rotations.

Conclusions Overall, compared to bulk soils, the sentinels captured taxa with copiotrophic or ruderal traits, 
and plant-associated taxa. The sentinels show promise as a sensitive, scalable method to monitor soil microbial 
communities and provide information complementary to traditional soil sampling.
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Background
Soil microbial communities exhibit high spatial and tem-
poral heterogeneity [9, 10, 30]. Microbial community 
spatial heterogeneity arises from high spatial turnover 
across multiple scales and, critically, strong spatial het-
erogeneity can dampen the ability to detect responses 
to variables of interest [9, 10, 14, 30, 41, 44]. In regard to 
temporal heterogeneity, microbial biomass turns over on 
an order of weeks to months depending on taxonomic 
group [48, 51]. Additionally, relic DNA can contribute to 
obscuring important differences in microbial communi-
ties [9, 70]. In short, measuring microbial communities to 
detect their responses to specific changes in management 
across space and time, for example across agricultural 
fields and growing seasons, is difficult. These challenges 
in assessing microbial communities are relevant to the 
wide interest in monitoring microbes, for example, as 
a soil health indicator in agricultural systems [21, 58]. 
Spatial and temporal heterogeneity and relic DNA may 
obscure important differences in microbial communities 
and thus impede such monitoring applications.

Although there are many ways to measure microbial 
communities, bulk soil DNA sequencing has become a 
standard approach. DNA sequencing is relatively fast and 
easy, but there are challenges associated with using bulk 
soil DNA profiles as a soil health metric. These include 
the high diversity and heterogeneity that make com-
munity data difficult to interpret, a disconnect between 
structure and function, and collateral sampling of inac-
tive microbes [7, 21, 58]. This limits the utility of bulk soil 
DNA profiling methods for assessing microbial responses 
to management, inferring microbial impacts on soil qual-
ity and plant health, and ultimately for selecting man-
agement interventions based on microbial communities. 
Other methods, including utilizing RNA or chemically 
excluding relic DNA, have also been used, with their own 
drawbacks [9, 70, 71].

A complementary method is to selectively sample 
an actively growing microbial community. This may 
reduce undesirable heterogeneity to improve detec-
tion of changes in microbial communities in response to 
changes in the soil environment, including from agricul-
tural management such as crop rotation. Primarily sam-
pling the DNA from actively growing microbes should 
reflect the current soil environment and reduce the con-
tributions from less active taxa and dormant cells in bulk 
soil. Just 0.2-5% of microbial biomass in soil is estimated 
to be active at any moment, and only 60% is potentially 
active [7]. Moreover, the transition from dormant to 
active takes hours to days [7]. Ingrowth cores or bags are 
one approach for sampling actively growing organisms [2, 
47, 63]. Typically, mesh bags filled with sterilized sand or 
soil are incubated in the soil, allowing growing organisms 
small enough to cross the mesh barrier to grow into the 

sterile substrate. The ingrowth bags then are retrieved 
after an incubation period. This approach has been used 
to estimate the production, biomass turnover, or com-
position of fine roots, mycorrhizal fungal dynamics, and 
bacterial dispersal [3, 11, 18, 22, 61, 64, 69]. Ingrowth 
bags have not been well-assessed as a monitoring tool for 
soil microbial communities and the limitations of using 
ingrowth bags versus bulk soil have not been evaluated 
using MinION sequencing. We expected that using ster-
ilized soil in root-excluding mesh bags could help capture 
an active subset of the soil microbial community that is 
more relevant to management differences than commu-
nities in bulk soil.

We tested the power of sterile soil traps, dubbed “ster-
ile sentinels,” to differentiate soil microbial communities 
under corn grown within low (2 crops) and high (4 crops) 
diversity annual crop rotations. Sterile sentinels consisted 
of root-excluding mesh bags containing autoclaved soil as 
barren substrata for colonization. We buried sterile sen-
tinels in the crop row in late June, incubated sentinels for 
1, 2, 4, 8, or 12 weeks before retrieval, and sampled bulk 
soils concurrently with sentinel placement and retrieval. 
The experiment was conducted for two consecutive 
growing seasons under the corn phase for both crop rota-
tions. Bacterial and fungal metabarcoding was performed 
on an Oxford Nanopore MinION. We sought to answer 
three questions: (1) Do sterile sentinels capture micro-
bial communities that differentiate crop rotations better 
than bulk soil? (2) What incubation time best differenti-
ates crop rotation microbial communities? (3) Which 
microbes are associated with sample type (sentinels ver-
sus bulk soil) and with each crop rotation within sample 
type?

We selected two annual crop rotations which dif-
fered in crop rotational diversity because we expected 
to see significant compositional differences in the soil 
microbial communities based on prior analyses of rhi-
zosphere communities [4]. We hypothesized that (1) 
sterile sentinels would capture a subset of the microbial 
community with greater statistical power to differenti-
ate between crop rotations compared to bulk soil, due 
to sentinels capturing an actively growing subset of the 
bulk soil. We hypothesized that (2) sentinels incubated 
in soil from early to mid-growing season would best dif-
ferentiate between crop rotations. We reasoned that with 
longer incubation time the current corn crop influence 
would homogenize the active community and coloniza-
tion by more taxa would increase sampling noise making 
it harder to distinguish rotations. Finally, we hypoth-
esized that (3) sterile sentinels would be colonized by 
actively growing taxa with high dispersal ability and the 
ability to exploit new resources quickly, in short, copio-
troph, or ruderal taxa. Sentinels were expected to con-
tain fewer taxa than bulk soil. We also expected the low 
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diversity rotation to have a higher relative abundance of 
species that can be classified as copiotrophs or ruderals, 
and pathogens, and a lower relative abundance of poten-
tially beneficial taxa relative to the high diversity rotation. 
We previously observed more pathogens in low diver-
sity rotations in this field experiment and corn yields 
are lower in low diversity rotations compared to more 
diverse rotations, which was partly due to microbial com-
munity differences [4].

Methods
Research plots
A long-term research experiment was established in 2000 
at the Eastern South Dakota Soil and Water Research 
Farm in Brookings, South Dakota, USA (44°21’ N; 
96°48’ W) to compare a two-year corn (Zea mays L.)-
soybean (Glycine max L. Merr.) (CS) crop rotation with 
more diversified crop rotations, including a four-year 
corn-soybean-spring wheat (Triticum aestivum L.)-pea 
(Pisum sativum subsp. arvense L. Asch.) (CSSwP) crop 
rotation. At this site, elevation is 500  m, the thirty-year 
mean annual precipitation is 580 mm, and mean annual 
temperature is 6.2  °C. The Mollisol soils are a moder-
ately drained, Barnes sandy clay loam with organic car-
bon content of 18 g C kg–1 soil (0–15 cm). Crop rotation 
treatments were established in a randomized complete 
block design with four replications; each crop in a rota-
tion sequence is present each year. The plots (93 m2) 
were no-till with 85% nitrogen fertilization based on 
locally recommended rates according to fall soil tests and 
crop yield goals (for 2020: corn = 7.84 Mg ha− 1, spring 
wheat = 2.95 Mg ha− 1; for 2021: corn = 9.4 Mg ha− 1, 
spring wheat = 3.36 Mg ha− 1); corn received 15 kg N ha− 1 
and spring wheat received 15 kg N ha− 1 and 12 kg K2O 
ha− 1 at planting. All plots received herbicide-based weed 

management as needed. For each year of sampling, plots 
in the corn phase of the CS and CSSwP rotations were 
studied.

Sterile sentinel construction
Sterile sentinels were constructed of 31 μm nylon mesh 
to inhibit root access; 5  cm x 5  cm bags were created 
with heat-sealing tape and filled with 12 g of soil that was 
autoclaved twice for 40 min at 121 °C with a 24-hour rest 
period between cycles. Sterile sentinels were freshly pre-
pared each year, including autoclaving the soil. Soil to fill 
sterile sentinels was collected once from the top 10 cm of 
border strips within an adjacent field experiment with the 
same soil type which had been cropped with corn, soy-
bean, and small grains under no-till over the previous 20 
years. This soil was air-dried, sieved (2 mm), and mixed 
before autoclaving.

Field placement and sampling
In 2020 and 2021, six sets of five sterile sentinels were 
buried vertically with their midpoint at 5 cm, in the corn 
row, after corn fertilization (corn stage V4-V6, late June, 
Fig. 1A). Three sentinel sets were placed two corn rows in 
from the plot edge; the remaining three sets were placed 
two rows north from the plot center corn row. Sentinels 
were collected at 1, 2, 4, 8, and 12 weeks after placement 
corresponding to late June, early July, late July, mid-
August, and mid-September (Fig. 1B).

This design resulted in six sentinel traps for each sam-
pling week per plot, replicated by four plots per rotation 
treatment (CS and CSSwP), and 240 total traps were 
placed each year. At sentinel placement and each sam-
pling week, a 3.2  cm diameter bulk soil core was taken 
adjacent to the collected sentinel. The soil core was cut 
to collect only the 2.5–7.5 cm depth to correspond with 

Fig. 1 (A) Sampling bulk soil at week 0, late June. Pink flagging tape marks sterile sentinel locations. Sterile sentinels were buried just prior to bulk soil 
sampling seen in photo. Each plot had six sets of five sentinels. (B) A retrieved sentinel from week 12, mid-September
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the sterile sentinel environment. The six sentinels were 
composited to yield one sentinel sample per plot for each 
sampling week; the six bulk soil cores were composited 
the same way. Soils were stored in a cooler on ice until 
processing within 4 h. Composited samples were passed 
through a 2  mm sieve, which was sanitized with 70% 
ethanol between samples, and an approximate 20 g sub-
sample was frozen at -80 °C for DNA extraction. A 10 g 
subsample was weighed, oven-dried at 105  °C for 24  h, 
then weighed again to determine gravimetric soil mois-
ture content.

Molecular work
DNA was extracted in triplicate with DNeasy PowerSoil 
Pro (Qiagen, USA). Total extracted DNA was quanti-
fied using the Invitrogen Quant-iT dsDNA Broad Range 
Assay Kit (Thermo Fischer Scientific, USA), then tripli-
cate extractions were combined prior to PCR. A two-step 
PCR was performed; an amplicon specific PCR followed 
by a PCR to attach barcodes. All PCR was done with Phu-
sion Green Hot Start II High-Fidelity PCR master mix. 
Amplicon PCR (PCR1) was done in triplicate to amplify 
the full-length 16  S rRNA gene with bacterial primers 
27 F and 1492R [29, 59] and the partial 18 S–5.8 S-28 S 
rRNA gene with Eukaryote primers SSU515fngs and 
TW13 [54, 56, 59]; both had Oxford Nanopore specific 
adapters attached. Technical replicates were visualized 
on agarose gel, combined by equal volume, cleaned with 
1:1 AMPure XP beads (Beckman Coulter Life Sciences, 
USA), and quantified with a Quant-it High Sensitivity 
or Broad Range kit (Thermo Fischer Scientific, USA). 
Barcode PCR (PCR2) was done with the Oxford Nano-
pore PCR Barcoding Expansion 1–96 Kit (EXP-PBC096, 
Oxford Nanopore Technologies Ltd, UK), following the 
recommended protocol. Libraries were prepared and 
sequenced following the Oxford Nanopore EXP-PBC096 
protocol using the Oxford Nanopore Ligation Sequenc-
ing Kit (SQK-LSK109, Oxford Nanopore Technologies 
Ltd, UK) for flow cell v9.4 on a MinION Mk1C device. 
Control samples for the experimental set-up, DNA 
extraction, and PCR were also included in the library 
preparation and sequencing: autoclaved soil, DNA 
extraction blank, a mock community positive control, 
PCR1 and PCR2 negative controls. The ZymoBIOMICS 
Microbial DNA Community Standard (#D6305, Zymo 
Research, USA) was the mock community positive con-
trol. One flow cell was used for each library (bacteria 
2020, bacteria 2021, eukaryotes 2020, eukaryotes 2021).

Bioinformatics
MinION fast5 files were base called and demultiplexed 
with guppy v4.2.2. Read quality and filtering parameters 
were selected by examining plots generated by NanoPlot 
v1.31.0 [17]. Demultiplexed reads were quality filtered 

with NanoFilt v2.7.1 with minimum average read qual-
ity score of 8 and read length between 200 and 3500 base 
pairs for eukaryote reads; for bacteria the quality filtering 
parameters were minimum average read quality score of 
12 and a read length between 1000 and 1700 base pairs 
[17]. Quality filtered reads were trimmed to remove any 
remaining adapter and primer sequences with cutadapt 
v3.2 [39].

Popular bioinformatics workflows for generating oper-
ational taxonomic units or amplicon sequence variants 
were not applicable to MinION sequencing data due to 
differences in error rates, so we tested two approaches 
to grouping reads and assigning taxonomy. The first 
approach grouped reads and assigned taxonomy by align-
ing each read to a reference database with minimap2 
v2.22, which was designed to align reads with high error 
rates to references [32, 33]. We used minimap2 to align 
reads to the reference database using the default settings 
for Oxford Nanopore reads. Aligned reads were filtered 
to exclude alignments with a quality score less than 4 and 
sequence divergence from a reference greater than 0.1. If 
a read was aligned to more than one reference sequence, 
only the alignment designated as primary by minimap2 
(arbitrarily) was retained. The number of reads that 
aligned to the same reference sequence were counted to 
construct a count table. The SILVA reference database 
SSUv138 was used for bacteria and UNITE version 9 
eukaryotes dynamic 29.11.2022 for eukaryotes [1, 49].

The second approach used Emu, which is built on mini-
map2. Emu uses read mapping alignment probabilities 
and an expectation-maximization algorithm to estimate 
taxonomic composition at the species level for Oxford 
Nanopore reads [15]. An Emu-provided database was 
used for bacterial reads. It consisted of the rrnDB v5.6 
and NCBI 16 S rRNA gene RefSeq databases downloaded 
on September 17, 2020; containing 49,301 sequences 
from 17,555 unique bacterial and archaeal taxa. The 
UNITE version 9 all eukaryotes dynamic 29.11.2022 
database was used for eukaryotes. We evaluated the two 
methods based on the similarity of the realized mock 
community to the theoretical mock community com-
position (i.e., similarity of the total number of taxa and 
proportion of each taxon) and the total number of reads 
retained (Supplementary Figs. 1 and 2). We chose to use 
Emu for bacteria because the number and proportions 
of bacterial taxa in the Emu mock community more 
closely matched the theoretical mock community than 
the minimap2 mock community (Supplementary Fig. 1). 
The realized mock communities for Emu and minimap2 
were similar for eukaryotes, but minimap2 retained more 
reads, therefore we used minimap2 for eukaryotes (Sup-
plementary Fig.  2). The eukaryote datasets were filtered 
to reads that mapped to kingdom Fungi to make bulk soil 
and sentinel samples more comparable, since sentinel 
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size exclusion would affect larger eukaryotes, such as 
earthworms. Both bacterial and fungal datasets were 
filtered to exclude taxa represented by fewer than three 
reads.

Bacterial traits, including genome size, growth rate, and 
motility, were assigned at the species level by matching 
NCBI taxonomy ids from Emu taxonomy and the bacte-
ria traits data product collected by Madin et al. [38]. The 
phenotypic and genomic traits for bacteria and archaea 
were aggregated from 26 curated, reliable sources, see 
Madin et al. [38] for a complete list of datasets and traits 
from each data set. Bacterial pathogens were determined 
at the genus level with FAPROTAX [36] and manual 
curation was done at the species level to ensure correct 
pathogen assignment using Bull et al. [8] as a reference. 
Fungal guilds were assigned by genus name from the 
FunGuild database [42].

Statistical analysis
All statistical analyses were completed in R v4.1.1 [50] 
and data visualized with the R package ggplot2 [65]. Sam-
pling weeks and year were analyzed individually, except 
richness t-tests, redundancy analysis and R2 variance 
paired t-tests. Sentinel and bulk soil samples from the 
same plot were paired for t-tests where applicable.

Basic community statistics were examined for each 
dataset. Rarefaction curves were generated to exam-
ine the effect of sampling depth on richness. Hill num-
bers for q = 0 and q = 1 were calculated on rarefied data 
tables using vegan and hillR packages and were compared 
between sample types and crop rotations [12]; Chiu & 
Chao [13, 31, 45]. Hill numbers are the effective num-
ber of species in an assemblage. The term q defines the 
sensitivity of a diversity to species frequency. Hill num-
bers are equivalent to species richness when q = 0 and the 
exponent of Shannon entropy when q = 1, and the units 
are always species [12]. Count tables were rarefied to the 
lowest sample size, as follows: bacteria 2020, 8745; bacte-
ria 2021, 4168; fungi 2020, 1888; fungi 2021, 1062.

Redundancy analysis (RDA) tested relative explanatory 
power of sample type, sampling week, and crop rotation 
for microbial community composition; community data 
tables were center log ratio transformed and RDA per-
formed using vegan [45].

To test the statistical power of sentinels versus bulk soil 
to differentiate between CS and CSSwP microbial com-
munities we used permANOVA (adonis2) in vegan [45] 
and paired t-tests. Sample by taxa matrices were center 
log ratio transformed using CLR in vegan. PermANOVAs 
with rotation as the predictor of community distance 
(Euclidean) were done for each sampling week and type. 
A two-tailed, paired t-test of permANOVA R2 values 
was used to determine the statistical power of sentinel 
versus bulk soil for discriminating microbial community 

differences between crop rotations. To test if incuba-
tion time was important to distinguishing crop rotation 
microbial communities, sampling week (incubation time) 
was tested as a predictor of the permANOVA R2 in a 
model with amplicon, sample type (bulk or sentinel), and 
all interactions as predictors. Sampling week was tested 
as a linear and second-order polynomial.

To test if traits or pathogens were more abundant in 
sample type or crop rotation, differential abundance was 
analyzed for the sample by trait matrices for fungal tro-
phic guild and bacterial motility type. Bacterial doubling 
time and genome size were tested between sample type 
and rotation for each sample type with Student’s t-tests 
or Wilcoxon t-tests. Differentially abundant species 
were identified for bacteria and fungi to determine taxa 
associated with sample type and crop rotation. Differen-
tial abundance was analyzed using the t-test in ALDEx2 
[23]. Taxa or functional groups were considered differ-
entially abundant at an absolute effect size greater than 1 
(ALDEx2 recommendation). In ALDEx2, the effect size is 
the median of the ratio of the between-group difference 
and the larger of the variances within group [23]. Differ-
ential abundance t-tests were done between sentinel and 
bulk soil pairs from the same plot (n = 8) and between 
crop rotation for sentinels and bulk soil separately, for 
each week (n = 4).

Results
Microbial biomass, diversity, and composition
Total DNA (µg DNA/gram dry soil) extracted increased 
in sterile sentinels from week 1–8 and plateaued at weeks 
8–12 in both 2020 and 2021 while total DNA remained 
high and constant from bulk soils (Fig. 2). The total DNA 
extracted from autoclaved soils was near zero (repre-
sented by week 0 sterile sentinel points in Fig. 2).

As a proxy for total biomass, this suggests that sen-
tinels were colonized by actively growing microbes, 
had much lower total biomass than the bulk soil, and 
stopped accumulating biomass between weeks 8–12 
(mid-August and mid-September). Autoclaved soil 
used for filling sterile sentinels contained very few 
sequences from Bacillaceae or Spizellomycetaceae 
and these specific reads were not detected in other 
samples.

As few studies have used Oxford Nanopore sequenc-
ing or a selective technique like sterile sentinels for 
metabarcoding of soil microbial communities, we 
present detailed sequencing and community results. 
The mean total number of reads across the four Min-
ION flow cells was 3.2  million. The mean number of 
reads retained for all libraries after quality control was 
807,364 with a mean of 1478 unique taxa. Read count 
summaries for each library at different bioinformatics 
steps are listed in Supplementary Table 1. Rarefaction 
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curves reached a plateau for bacteria but did not reach 
a plateau for fungi (Supplementary Fig. 3). The method 
of read grouping likely influenced the shape of the rar-
efaction curves. The error correction in Emu collapses 
sequencing reads into fewer operational taxonomic 
units, whereas minimap2 alone generates more rare 
taxa. It is likely that greater sequencing depth would 
have recovered more bacterial and fungal taxa.

Bacterial richness and diversity were higher in senti-
nels than bulk soils in 2021, but in 2020 there was no 
statistical difference in richness and diversity (t-test 
including all time points, p = 0.05, Supplementary 

Table 2). Bulk soils had higher fungal richness and 
diversity than sterile sentinels (t-test including all time 
points, p = 0.001, Supplementary Table 2). Richness 
and diversity were significantly higher in the CS rota-
tion for 2021 fungal bulk soils (t-test, p = 0.005). Bac-
terial diversity was marginally higher in the CSSwP 
rotation in 2021 (t-test, p = 0.04). Richness and diver-
sity did not differ between crop rotations for bacteria 
or fungi in other years or sample types (t-test includ-
ing all time points, p > 0.05, Supplementary Figs. 3–4).

Redundancy analysis (RDA) of each dataset revealed 
differences in predictor relative importance for 

Fig. 2 Total DNA extracted from sentinel and bulk soil samples, expressed on a dry soil mass basis. Bulk soil contained at least twice as much DNA as 
sterile sentinels. Total DNA extracted from sentinels increased until week 8 when it leveled off in both 2020 and 2021; sentinel data are shown with a loess 
model fit with geom_smooth in ggpot2. Total DNA extracted from bulk soils was similar across sampling weeks in both years; bulk data are shown with a 
linear model fit with geom_smooth in ggplot2. The sterile sentinel week 0 points represent the DNA extracted from the autoclaved soil control samples 
in 2020 and 2021
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bacteria and fungi. Bacterial community composition 
was best explained by sample type (2020 p = 0.001, 
2021 p = 0.001) followed by sampling week (2020 
p = 0.001, 2021 p = 0.001) and crop rotation (2020 
p = 0.056, 2021 p = 0.001), and the importance of sam-
pling week was strongly driven by sterile sentinels 
(Fig. 3A, Supplementary Fig. 6A, Supplementary Table 

3). Fungal community composition was best described 
by sample type (2020 p = 0.001, 2021 p = 0.001), 
then crop rotation (2020 p = 0.001, 2021 p = 0.001) 
and sampling week (2020 p = 0.001, 2021 p = 0.001) 
(Fig. 3B, Supplementary Fig. 6B, Supplementary Table 
3). RDA results were the same in 2020 (Fig.  3A-B, 

Fig. 3 Redundancy analysis ordinations of bacteria 2020 (A) and fungi 2020 datasets (B) with sample type, sampling week and crop rotation as predictors. 
Colored points represent individual samples. The amount of total variance explained by each RDA axis is indicated along with significance. Ordinations are 
scaled to show relationship between samples (scaling = 2). Text indicates the centroids for categorical predictors (sample type and crop rotation). The RDA 
ordinations reveal differences in predictor hierarchy. Variance in bacterial community composition is best explained by sample type, followed by sampling 
week, and finally crop rotation. Fungal composition difference is best captured by sample type and crop rotation, then sampling week. Results for 2021 
datasets were very similar and these data are shown in Supplementary Fig. 6. Summaries of all RDA statistics are in Supplementary Table 3
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Supplementary Table 3) and 2021 (Supplementary 
Fig. 6A-B, Supplementary Table 3).

Crop rotation microbial community differentiation in 
sentinels versus bulk soil
We hypothesized that sterile sentinels would capture 
a subset of the microbial community with higher sta-
tistical power to differentiate between crop rotations 
compared to bulk soil. Supporting this hypothesis, 
sterile sentinels had greater statistical power than bulk 
soil to distinguish bacterial community dissimilar-
ity between crop rotations (Fig. 4; Table 1). For fungi, 
sentinels and bulk soil were not significantly different 
(Fig. 4; Table 1). Incubation time (sampling week) did 
not predict variance explained by crop rotation for 

sentinels (ANOVA, p > 0.01 for linear and polynomial 
time models).

Microbial trait and taxa differential abundance between 
sentinels and bulk soil
Supporting the expectation that taxa colonizing senti-
nels were more likely to be able to disperse and exploit 
new resources quickly, the differentially abundant micro-
bial traits in sentinels were characteristic of copiotroph 
and ruderal life strategies. Taxa in sentinels also tended 
to be plant-associated (i.e., potential pathogens, sym-
biotic, potential endophytes). Sentinel bacteria had 
larger genomes and faster maximum growth rates than 
bulk soil bacteria for most sampling weeks in 2020 and 
2021 (genome size: bulk soil mean = 5.18 × 106, sentinels 
mean = 5.8 × 106, t-test p-values < 0.01 for all sampling 
weeks; doubling time: bulk soil weighted mean = 9.9  h, 
sentinels weighted mean 1.9  h, Wilcoxon p-value < 0.01 
for weeks 1–2. Supplementary Figs. 7–8). The total num-
ber of bacterial species assigned a genome size was 554 
(45%) in 2020 and 412 (45%) in 2021 (Supplementary 
Table 5). The total number of bacterial species assigned 
a doubling time was 75 (6%) in 2020 and 45 (5%) in 2021 
(Supplementary Table 5). Bacteria with potential gliding 
motility were more abundant in sentinels relative to bulk 
soil in sampling weeks 2–12, while potentially non-motile 

Table 1 Paired t-test of bulk soil and sentinel PermANOVA R2 
values for bacteria (n = 10) and fungi (n = 10). The paired t-test 
compared the 10 sentinel-bulk pairs from both years, seen in 
Fig. 4
Amplicon Bulk 

Soil 
Mean 
R2

Sterile 
Sentinel 
Mean R2

t Mean of 
Differences

p-
val-
ue

Bacteria 0.154 0.176 3.316 0.022 0.009
Fungi 0.214 0.203 -1.332 -0.011 0.216

Fig. 4 PermANOVA R2 from tests with crop rotation as the explanatory variable for community distance. PermANOVA tests were done for each sampling 
week (n = 4). A summary of each permANOVA test is in Supplementary Table 4
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taxa were more abundant in bulk soil for all sampling 
weeks (absolute effect size > 1, Supplementary Fig.  9). 
The total number of bacterial species assigned a motility 
type was 439 (35%) in 2020 and 328 (36%) in 2021 (Sup-
plementary Table 5). Bacterial taxa identified as plant 
pathogens were only present in sentinels (2020 = 14 taxa, 
2021 = 12 taxa).

Fungal plant pathogens had higher abundance in sen-
tinels than bulk soil at all sampling times in both years. 
Several other guilds were more abundant in sentinels 
relative to bulk soil in several sampling weeks, includ-
ing soil saprotrophs (weeks 2–12), arbuscular mycor-
rhizae (weeks 2–8) and wood saprotrophs (8) in 2020. 
In 2021, mycoparasites were more abundant in sentinels 
relative to bulk soil for all sampling weeks. Pollen sapro-
trophs were more abundant in bulk soils than sentinels 
for weeks 2–12 (2021) and only week 12 in 2020 (for all 
differentially abundant guilds, absolute effect size > 1, 
Supplementary Fig. 10). The total number of fungal taxa 
assigned a guild was 1166 (54%) in 2020 and 948 (60%) in 
2021 (Supplementary Table 5).

In total, 213 fungal and 569 bacterial taxa were differ-
entially abundant between bulk soil and sentinels. Taxa 
highly abundant in bulk soil were not always the most 
abundant taxa in the sentinels, especially for bacteria 
(Supplementary Figs.  11–12). Bacterial genus Massilia 
was highly abundant in sentinels, as well as Vitiosangium 
and Ramlibacter. In contrast, genera Gaiella, Chthonio-
bacter, and Vicinimibacter were most abundant in bulk 
soils. Fungal taxa in the genera Mortierella, Fusarium, 
and Bipolaris were most abundant in sentinels, while 
Phyllactinia, Podila, and Clonostachys were most abun-
dant in bulk soils.

Microbial trait and taxa differential abundance between 
crop rotations
In contrast with hypotheses, microbial traits were not 
significantly different between crop rotations. Neither 
bacterial plant pathogens nor motility type showed sig-
nificant differential abundance between crop rotations in 
sentinels or bulk soils (absolute effect size < 1). Bacterial 
genome size and maximum growth rate were not sig-
nificantly different between CS and CSSwP rotations for 
either sample type (t-test, p > 0.05). Likewise, fungal guild 
differential abundance trends were weak with most effect 
sizes much smaller than or close to 1 for few sampling 
weeks in bulk soil and sentinels (Supplementary Fig. 13).

Across all sample types, weeks, and both years, 194 
unique fungal (81 genera) taxa and 327 unique bacterial 
taxa (238 genera) were differentially abundant between 
CS and CSSwP rotations. Emphasizing the validity of 
taxa collected in sentinels, the majority of sentinel and 
bulk taxa were differentially more abundant in the same 
rotation across sampling methods. For example, bacteria 

in the genera Ramlibacter (CSSwP) and Microlunatus 
(CS) and fungi in the genera Paraphaeosphaeria (CSSwP) 
and Cadophora (CS) (Fig. 5). However, a few taxa showed 
opposing patterns depending on sampling method, such 
as a Bacillus (bulk: more abundant in CS; sentinel: more 
abundant in CSSwP) (Fig.  5A). Each sampling methods 
also identified a smaller number of unique, differentially 
abundant taxa. For example, bacterial genera Flaviso-
libacter (CSSwP), Cupriavidus (CSSwP), and Massilia 
(CSSwP) were almost exclusively found in sentinels 
(Fig.  5A, total bacterial taxa differentially abundant in 
CSSwP: 2020 bulk 54, sentinel 96; 2021 bulk 21, sentinel 
55). Conversely, Rubrobacter (CS), Bradyrhizobium (CS), 
and Clostridium (CS) were only differentially abundant 
in bulk soil (Fig.  5A, total bacterial taxa differentially 
abundant in CS: 2020 bulk 40, sentinel 36; 2021 bulk 78, 
sentinel 62). Sentinels captured more differentially abun-
dant bacterial taxa than bulk soil that favored the CSSwP 
(p = 0.03, t-test), but not the CS rotation (p = 0.7, t-test). 
Still, comparing across both rotations, the total number 
of differentially abundant taxa that the sentinels captured 
was no different than the number that sampling bulk soil 
captured (paired t-test, t = -2.03, df = 9, p = 0.07, mean dif-
ference = -9.9).

In contrast, for fungi, bulk soils had more differentially 
abundant taxa between rotations than sentinels (paired 
t-test, t = -2.6, df = 9, p = 0.03, mean difference = 7.7). Bulk 
soils also captured more differentially abundant fungal 
taxa in CSSwP than sentinels (p = 0.003, t-test) but not 
in the CS rotation (p = 0.1, t-test). Overall, fungal gen-
era frequently identified as differentially abundant in 
the CS rotation included the genera Ustilago, Exophiala, 
Cadophora, Rhizophlyctis. CSSwP rotations were char-
acterized by Thecaphora, Fusarium, Paraphaeosphaeria, 
and Phyllactinia (Fig.  5B, total fungal taxa differentially 
abundant in CS: 2020 bulk 88 sentinel 37; 2021: bulk 38, 
sentinel 30 and in CSSwP: 2020 bulk 81, sentinel 45; 2021 
bulk 59, sentinel 40).

Discussion
In this study, we aimed to test the utility of sterile soil 
in-growth bags, sterile sentinels, for capturing an active, 
management-discriminating subset of the microbial 
communities in cropped soils. Comparing sentinels with 
concurrently sampled bulk soils, we demonstrated that 
sentinels distinguished crop rotations as well as or better 
than bulk soil, and that each sample type captured dis-
tinct microbial communities. The length of incubation 
time had no effect on predictive power of sentinels. How-
ever, the different incubation times did allow observation 
of taxa turnover and increased taxa richness in sentinels, 
including more shared species between the sentinels and 
bulk soil with longer sentinel incubation time. We did 
not detect significant differences in traits and functional 
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groups between crop rotations from bulk soils or sen-
tinels. However, taxonomic groups were differentially 
abundant between crop rotations. Overall, investigation 
of taxa identities and traits supported the hypothesis 
that the sentinels captured management-differentiating, 
active microbes. These microbes tended to be potential 
plant pathogens, root symbionts, endophytes, or rhizo-
sphere taxa.

Bacterial responses
Sentinels had greater power to detect crop rotation 
effects on bacterial communities. A potential mecha-
nism behind this observation is that sentinels may have 

reduced the prevalence of dormant taxa relative to 
taxa that are actively growing near corn plants in soils 
with different crop rotation legacies. Dormant taxa 
can comprise up to 60% of soil DNA [7] while dead 
organisms can use valuable read space within high 
throughput sequencing methods [9]. Sentinel bacte-
rial richness and diversity was higher than or equal to 
bulk soil, even as total DNA was substantially lower 
than in bulk soil, suggesting that the sentinels served 
as a “hot spot” for bacterial growth for bacteria already 
more active in the bulk soil due to the proximity of 
living plant roots [28]; the sentinels were place in the 
crop row. The higher abundance of plant-associated 

Fig. 5 A subset of bacterial (A) and fungal (B) taxa differentially abundant between crop rotation. Each point represents the effect size of a single ALDEx2 
t-test, i.e., differential abundance between CS and CSSwP for 2020 week 1 sentinel fungi (n = 4). Taxa with higher relative abundance in CS have negative 
effect sizes. The subset of taxa shown were chosen by ranking the taxa by total number of significant t-tests, then selecting most frequently differentially 
abundant taxa: bacteria had 21 taxa with 3 or more significant t-tests, fungi had 17 taxa with four or more significant t-tests. For the selected taxa, all t-test 
effect sizes are shown and t-tests with effect sizes less than 1 are shown with high transparency
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bacteria, such as rhizosphere taxa Massilia (Ofek et 
al., 2012) and plant pathogens, in sentinels also sup-
port this interpretation. Therefore, while crop rotation 
did influence bulk soil communities, explaining up to 
15% of differences in community composition (Fig. 4), 
the additional 2-2.5% of bacterial community variation 
explained by sentinels could be due to detection of 
taxa that are likely to be interacting with crops.

Bacteria colonizing sentinels offered distinct and 
complementary views of community response to crop 
rotation compared with bulk soil. Bacteria in sentinels 
had traits that correlated with copiotrophic or ruderal 
taxa such as high potential maximum growth rate, 
motility, and large potential genome size [20, 24, 43], 
Wood et al., 2023). Motility, maximum growth rate, 
and genome size are also critical traits for rhizosphere 
bacterial taxa [34]. Both the proximity of sentinels to 
plant roots and the fact that early colonizing bacte-
ria of barren substrates and rhizosphere bacteria may 
share similar traits may be one explanation for why 
the sentinels captured actively growing, plant-associa-
tive bacteria. Sentinel bacteria were also more likely 
than bulk soil bacteria to be plant pathogens. These 
observations suggest that sentinel communities can 
be useful for evaluating crop management. Sentinels 
may facilitate monitoring for disease prevention or 
allow tracking soil responses to management designed 
to reduce pathogen load, for example crop rotation 
[4]. We did not observe hypothesized differences in 
bacterial traits between rotations. Several potential 
explanations could account for no differences: lack of 
power due to the number of taxa with trait data, the 
traits we investigated are not relevant to the rotations, 
or greater sequencing depth was needed to detect 
differences.

Fungal responses
Fungal communities colonizing sentinels also offered 
complementary views of overall community responses. 
As with bacteria, sentinels were selective for plant 
pathogens and plant mutualists compared to bulk soil. 
For example, arbuscular mycorrhizal fungi and the 
plant-associated genera Bipolaris (pathogen), Mor-
tierella (endophyte-soil saprotroph), and Fusarium 
(pathogen or beneficial) were more abundant in sen-
tinels than bulk soils. Sentinel fungi were neither 
more nor less sensitive to management than bulk 
fungi, in contrast with bacteria. This difference could 
be due to life history traits including growth form, 
slower growth, and greater investment in persistent 
structures relative to bacteria, or a lower competitive 
advantage with bacteria in the relatively homogenous 
and resource-rich autoclaved soil in the sentinels, or 
fewer truly active fungi in the soil [53]. Fungal richness 

and diversity were lower in sentinel than bulk soils, 
suggesting that only a few fungi sought or were able to 
colonize sterile sentinels during the incubation period. 
A previous study of arbuscular mycorrhizal fungi in 
sand in-growth bags vs. bulk soils also detected fewer 
fungi in in-growth bags, but these fungi still captured 
treatment effects [61], as we found in our study.

Overall, we did not find differences in functional 
guilds between crop rotations. Both rotations hosted 
similar functional guilds, yet these guild were com-
prised of different species, and we did find consistent 
functional patterns when examining differentially 
abundant taxa. For example, differentially abundant CS 
fungal taxa tended to be stress tolerating endophytes 
(Exophiala, Mortierella) [67], arbuscular mycorrhizal 
fungi (Corymbiglomus), and plant pathogens of corn 
and soybean (Ustilago, Cadophora). In comparison, 
the CSSwP system contained a different set of plant 
pathogens (Phyllactinia, Fusarium, Thecaphora) and 
plant endophytic fungi (Paraphaeosphaeria, Septoglo-
mus, Fusarium). We also observed expected patterns 
that underlie benefits of diverse crop rotations. For 
example, Cadophora gregata, the cause of brown stem 
rot of soybean [25], was more abundant in CS than 
CSSwP rotations. This pathogen does not decline in 
abundance over the corn growing season in CS but is 
barely present in CSSwP, supporting the role of more 
diverse rotations in reducing pathogen pressure and 
the importance of previous crop and crop legacies in 
determining soil microbial communities [4, 5, 46, 57].

Bulk soil microbial community differences between crop 
rotations
Across two growing seasons and multiple sampling 
times per season, analysis of bulk soils established that 
CS and CSSwP crop rotations featured distinct bacte-
rial and fungal communities, but we found no consis-
tent differences in diversity or traits between rotations. 
A meta-analyses of crop rotation effects on soil 
microbial diversity reported a 3% increase in micro-
bial diversity with increased rotational diversity [62]. 
However, only a few studies report bulk soil micro-
bial community composition and diversity response to 
crop rotational diversity that were conducted in agri-
cultural systems with more than two crops in long-
term, fully replicated field trials. These studies report 
that crop rotation diversity significantly alters bacte-
rial community composition [46, 52, 57], with which 
our study agrees. Microbial diversity has a more com-
plex relationship with crop rotational diversity; stud-
ies report that bulk soil microbial diversity increases 
[68], decreases [46], or does not change [52, 57] with 
increased crop rotational diversity. Given our results 
and those from the literature, crop rotational diversity 
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shapes soil microbial community composition with 
context, or scale dependent effects on microbial diver-
sity, although there is a need for more data on fungi in 
long-term crop rotations with more than two crops.

Use of the MinION sequencer for metabarcoding of soil 
microbial communities
We used a third generation, long read sequencer from 
Oxford Nanopore in this study. Several advantages and 
disadvantages of this sequencing method are appar-
ent that several papers have already discussed, includ-
ing quick sample-to-data turnaround, longer reads, and 
higher error rates [6, 16, 26, 35, 60]. In our experience, 
preparing the libraries and sequencing with the MinION 
was easy and quite fast compared to the longer turn-
around time from sequencing centers. We agree that it 
is an excellent tool for rapid response monitoring of tar-
geted organisms, particularly because of the read length. 
The kilobase and longer reads allow sequencing the full 
16  S rRNA gene to achieve species-level resolution for 
bacteria [40]. Longer reads allow the variable fungal ITS 
marker to be flanked by more the more conservative 18 S 
and 28 S, which could aide phylogenetic placement and 
species level distinction for some taxa [37].

These benefits come with tradeoffs. The MinION pro-
duces relatively few reads, which is problematic for ade-
quately sampling the hyper diverse communities found 
in soil. However, less diverse communities or lower DNA 
loads as observed for the sterile sentinels could be well 
served by a MinION, especially for monitoring a small 
set of organisms. The nanopore error rates and bias are 
a point of concern for some metabarcoding applications 
[35]. Our use of a positive control allowed us to miti-
gate these concerns in part [55], as we were used a mock 
community as a benchmark for bioinformatics choices. 
As Oxford Nanopore accuracy improves, we expect that 
long read sequencing with rapid sample-to-data turn-
around for metabarcoding will become widely used.

Applications of sentinels to monitoring and managing soil 
microbial communities
Our results suggest that combining sterile sentinels with 
long-read sequencing could aid in reproducibly moni-
toring and actively managing microbial communities. 
A monitoring-active management scenario requires 
a method that (a) returns data rapidly; (b) selects for 
actively growing taxa; and (c) is easily and reproduc-
ibly executed across contexts, given any level of user 
experience.

Regarding rapid turnaround, farmers require rele-
vant feedback about the effects of their management 
choices on microbes – particularly regarding patho-
gen pressure – within days of sampling [19]. A sim-
ple, fast assay like sterile sentinels, paired with rapid 

sequencing, such as via MinION, can provide this 
turnaround. The benefits of MinION sequencing must 
be considered along with the challenges and draw-
backs noted above.

Sentinels seem to select for actively growing, plant-
associated taxa. Sentinels have multiple advantages 
and limitations compared to methods that were 
designed to provide similar data about soil microbial 
communities, such as standard bulk soil, soil RNA or 
plant rhizospheres. Although RNA is used to profile 
the active community, RNA levels may better represent 
past, current, and future potential activity rather than 
current activity [71]. Moreover, the instability of RNA 
can make accurate sampling technically and logisti-
cally difficult. In contrast, sentinels are easy to use and 
do capture actively growing microbes, although it is a 
limited subset of the entire community. As an alterna-
tive to RNA analyses, researchers may exclude relic 
DNA, the extracellular DNA from dead microbial cells, 
to better estimate the living soil community. Relic 
DNA has the potential to affect estimates of microbial 
diversity and dynamics and may be excluded through 
chemical treatments before DNA extraction Len-
non et al. [70], Carini et al [9]. In contrast, sentinels 
were designed to subsample the microbial community 
before relic DNA accumulates.

Finally, we expect sentinel results to be more trans-
ferrable because the process of manufacturing, placing, 
and removing sentinels reduces sources of technical 
variation including of soil type, sampling depth, and 
sampling volume. These are major sources of variation 
in soil microbial ecology studies [10, 66]. For example, 
using a standard soil could reduce the technical vari-
ability of extracting microbial DNA from different 
soil types [70]. Reducing these sources of error and 
bias will allow for specific and robust comparisons of 
microbial communities across sampling and ecological 
contexts.

This sterile sentinel method can be used to distin-
guish the actively growing microbial communities 
among experimental treatments when a highly stan-
dardized, cost-effective method is needed. The design 
of the sentinels could be modified for exclusion or 
inclusion of different groups. We excluded roots and 
included fungi and bacteria by using 31 μm nylon mesh 
[27], but mesh size could be altered to address differ-
ent fractions of the microbial community or include 
plant roots, to suit the research question. For example, 
although focused on leaf litter, Albright and Martiny 
[3] used different mesh sizes (18  μm and 0.22  μm) to 
manipulate bacterial dispersal rates, as well as different 
substrates in the mesh bags, to disentangle the roles 
of dispersal, growth rate, and succession in bacterial 
community diversity and composition. Alternatively, 
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using a larger mesh size to include plant roots may 
allow direct collection of rhizosphere communities.

Further investigation of sentinels across incubation 
timing and duration, and across soil types and depths 
could test the utility of the sentinels beyond distin-
guishing between experimental treatments. Questions 
could include: how meaningful is the sampled com-
munity for indicating ecological processes, such as 
nutrient cycling? How do sentinel results of potential 
soil microbial activity compare with rhizosphere com-
munities? Do sentinel microbial communities predict 
plant health, or can sentinels be used to monitor plant 
health? And to what extent are these results consistent 
across soil types and stochastic weather patterns?

Conclusions
Soil bacteria and fungi are critical to soil processes and 
plant growth. In agricultural systems, this translates to 
significant influence on agronomic and environmen-
tal outcomes. Still, assessing the active component of 
these communities – the taxa responding to manage-
ment, interacting with plants, and cycling nutrients 
– remains challenging. The sterile sentinel method 
attempts to improve assessment by incubating uncol-
onized and standard soil within a root exclusion bag 
in the field. The method provided greater resolution 
in identifying management effects on bacterial com-
munity structure and allowed inference of manage-
ment effects on bacteria and fungi. Sentinel results 
therefore provided complementary information about 
soil microbial communities to that of bulk soil. Fur-
ther testing across sites and deployment schemes 
will enable assessment of the transferability of these 
results. The method also allowed easy and standard-
ized sample collection without specialized equipment. 
When combined with rapid-turnaround sequencing 
technologies, we anticipate this method could facili-
tate routine and large-scale assessment of critical soil 
microbes, ultimately leading to better prediction and 
management of their role in agricultural systems.
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