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Planctomyces limnophilus Hirsch and Müller 1986 belongs to the order Planctomycetales, 
which differs from other bacterial taxa by several distinctive features such as internal cell 
compartmentalization, multiplication by forming buds directly from the spherical, ovoid or 
pear-shaped mother cell and a cell wall which is stabilized by a proteinaceous layer rather 
than a peptidoglycan layer. Besides Pirellula staleyi, this is the second completed genome se-
quence of the family Planctomycetaceae. P. limnophilus is of interest because it differs from 
Pirellula by the presence of a stalk and its structure of fibril bundles, its cell shape and size, 
the formation of multicellular rosettes, low salt tolerance and red pigmented colonies. The 
5,460,085 bp long genome with its 4,304 protein-coding and 66 RNA genes is a part of the 
Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction 
Strain Mü 290T (= DSM 3776 = ATCC 43296) is the 
type strain of Planctomyces limnophilus [1]. Cur-
rently, there are six species placed in the genus 
Planctomyces [2], the type species of which is P. 
bekefii [3-5]. The type species was initially de-
scribed as a fungus under the International Code 
of Botanical Nomenclature [3,6]. The species P. 
guttaeformis and P. stranskae were also initially 
described as fungi, with their names being revived 
under the Bacteriological Code in 1984 [7]. The 
genus name derives from the Greek words ‘plank-
tos’, wandering, floating, and ‘mukês’ meaning 

‘fungus’ to indicate a floating fungus [3], reflecting 
their initial descriptions as members of the fungi. 
The species epithet derives from the Greek words 
‘limnos’, lake, and ‘philos’, friend, loving, to indi-
cate lake-loving [1]. Strain Mü 290T together with 
another strain (strain 279 = DSM 1115) have been 
isolated from the freshwater lake Plußsee in Hols-
tein, Germany [1]. Other strains of P. limnophilus 
have been isolated from Schrevenpark, Lake 
Mondsee, a ‘cattle manure’ (all near Kiel, Germa-
ny), and leakage water from a (industrial) com-
post heap (probably also in Germany) and were 
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originally stored at the IFAM collection (Institut 
für Allgemeine Mikrobiologie, University of Kiel, 
Germany) [8]. 
The rpoN gene from P. limnophilus has been used 
in complementation studies in order to demon-
strate the range of phylogenetic groups within the 
domain Bacteria that are known to contain the 
alternative sigma factor σ54 [9]. P. limnophilus 
strain Mü 290T has also been utilized to demon-
strate the widespread presence of the dnaK 
(HSP70) multigene family in members of the or-
ders Planctomycetales and Verrucomicrobiales 
[10]. Quite early, in 1996, a physical map of the 
genome of strain Mü 290T had been obtained [11]. 
P. limnophilus strain Mü 290T was also utilized in a 
comparative analysis of ribonuclease P RNA of the 
Planctomycetes [12]. Here we present a summary 
classification and a set of features for P. limnophi-
lus Mü 290T, together with the description of the 
complete genomic sequencing and annotation. 

Classification and features 
This organism has a distinct cell cycle, with sessile 
mother cells forming stalks that attach to surfaces 
or to other stalks and motile daughter cells that 
bud from the mother cell. Mother cells are spheri-
cal to ovoid with stalks composed of twisted fibrils 
[1]. The diameter of the mother cell is 1.1 to 1.5 
µm. Multiplication occurs by budding on the distal 
cell pole, yielding daughter cells which are mono-
trichously and polarly flagellated [1]. The carbon 
sources D-glucose, D-galactose, maltose, cellobi-
ose, N-acetyl glucosamine are utilized (0.1% w/v) 

(Table 1), but not glucuronic acid, D-fructose, D-
ribose, mannitol, starch, dextrin, inulin, salicin, 
pyruvate, citrate, α-oxoglutarate, succinate, fuma-
rate, malate, formamide, methylamine·HCl 
(0.136%), formate (0.136%), urea (0.09%), me-
thane (0.5%), methanol (0.4%), ethanol (0.4%), 
lactate, acetate, propionate, tartrate, glutarate, 
caproate, phtalate, glycerol (0.186%), L-arginine, 
L-aspartate, DL-alanine, L-glutamate, L-glycine, L-
histidine, L-leucine, DL-phenylalanine, L-proline, 
and L-serine [1]. There is no aerobic acid forma-
tion from D-glucose, saccharose, D-fructose, mal-
tose, D-galactose and mannitol, nor is there anae-
robic acid formation from D-fructose or mannitol. 
However, there is anaerobic acid formation from 
D-glucose, saccharose, maltose or galactose [1]. 
Anaerobic gas formation on Hugh-Leifson medium 
was not reported. (NH4)2SO4 was utilized as a ni-
trogen source , but not NaNO2 (0.2 - 0.7%), NaNO3 
(0.2 - 0.85%), methylamine·HCl (0.675%) or urea 
(0.46%) [1]. Strain Mü 290T does not require vi-
tamin supplements. It is reported to perform dis-
similatory nitrate reduction, gelatin liquefaction, 
H2S formation and is tolerant to 30 vol% CO [1]. 
However, strain Mü 290T is negative for decarbox-
ylation of lysine or arginine, deamination of phe-
nylalanine or lysine, oligocarbophilic growth, 
urease, nitrification, assimilatory nitrate reduc-
tion, anaerobic gas formation with nitrate, forma-
tion of acetoin (up to 27 d) or indole, growth in or 
changes of litmus milk, tolerance of 50 vol% CO, 
and extracellular DNase [1]. 

 
Figure 1. Scanning electron micrograph of P. limnophilus Mü 290T 
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As a member of the order Planctomycetales, P. lim-
nophilus strain Mü 290T is characterized by several 
distinctive morphological features such as rigid 
stalk fibers and the formation of multicellular ro-
settes (Figure 1) [1]. Further studies on another 
Planctomyces species, P. maris [21], revealed inter-
nal cell compartmentalization into the nucleoid, 
paryphoplasm, and a large ovoid central region 
[22]. The 16S rRNA gene sequence similarity values 
among isolates of the currently described species of 
this genus are sufficiently divergent to consider a 
re-examination of their taxonomy, e.g. the se-
quences of the two other type strains in the genus, 
P. maris [21] and P. brasiliensis [23] each share only 
84.9% sequence identity with strain Mü 290T [the 
other three species in this genus are currently 
without an available type strain], whereas the other 
type strains from the family Planctomycetaceae 
share 78.8 to 82.8% sequence identity with strain 
Mü 290T [24]. This view is indirectly supported by 

the establishment of the genus Schlesneria, which is 
placed within the radiation of the genus Plancto-
myces [25] with up to 88.2% sequence identity with 
strain Mü 290T. Any taxonomic re-arrangements 
are linked to the absence of suitable biochemi-
cal/physiological, gene sequence and chemotax-
onomic data for the type species of the genus and 
two additional species. Uncultured clone sequences 
similar to the 16S rRNA gene sequence from P. lim-
nophilus were obtained from earthworm gut (98%, 
FJ542967) [26], however, metagenomic surveys do 
not surpass 83% sequence similarity (status June 
2010). 
Figure 2 shows the phylogenetic neighborhood of 
P. limnophilus Mü 290T in a 16S rRNA based tree. 
The sequences of the two identical 16S rRNA gene 
copies differ by one nucleotide from the previous-
ly published 16S rRNA sequence (X62911) gener-
ated from IFAM 1008, which contains one ambi-
guous base call. 

 

Figure 2. Phylogenetic tree highlighting the position of P. limnophilus Mü 290T relative to the type strains of the other 
species within the genus and to the type strains of the other genera within the family Planctomycetaceae. The tree was 
inferred from 1,336 aligned characters [27,28] of the 16S rRNA gene sequence under the maximum likelihood criterion 
[29] and rooted in accordance with the current taxonomy [30]. The branches are scaled in terms of the expected number 
of substitutions per site. Numbers above branches are support values from 1,000 bootstrap replicates [31] if larger than 
60%. Lineages with type strain genome sequencing projects registered in GOLD [32] are shown in blue, published ge-
nomes in bold, e.g. the recently published GEBA genome of Pirellula staleyi [33]. 16S rRNA gene sequences are not 
available for strains of the species P. bekefii, P. guttaeformis or P. stranskae, all of which are typified by descriptions and 
were initially described as fungi [1,7]. The name P. gracilis was also initially described as a fungus, but the name has not 
been validly published under the Bacteriological Code. Starr et al. [34] considered this organism not be to a planctomy-
cete. 

Chemotaxonomy 
The genus Planctomyces lacks muramic acid and 
diaminopimelic acid, as was determined for P. ma-
ris [35]. However, a large amount of aspartic acid 
was found in whole cell hydrolysates [35]. Instead 
of containing peptidoglycan, the 10% SDS resis-
tant cell envelope consisted almost entirely of pro-
tein which is rich in proline and cysteine and is 
stabilized to a high degree by disulfide bonds [36]. 

Comparable data are not available for P. limnophi-
lus. The fatty acids in the polar lipids of strain Mü 
290T are C16:0 (46.6%), C18:1ω9c (20.6%),C16:1ω7c 
(18.4%), C 18:1ω7c (5.5%), C 15:0 (1.0%), C 17:0 
(1.7%), C 18:0 (1.0%), C 17:1ω8c (2.6), and C 20:1ω9c 
(1.3%) [37]. A similar fatty acid composition was 
reported by Kulichevskaya et al. [25], who also 
reported the presence of long chain, saturated al-
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cohols and diols. The dominant lipopolysaccharide 
hydroxy fatty acid of strain Mü 290T are C3-OH 14:0 
(74.1%),C3-OH 20:0 (22.5%), and C3-OH 18:0 (3.4%) 
[37]. The sole respiratory lipoquinone is MK-6, a 
feature of all members of the aerobic members of 
the family Planctomycetaceae examined to date 
[38]. Like all members of Sittig and Schlesner’s 
group 3 Planctomycetes the type strain produced 
phosphatidylmonomethylethanolamine, phospha-

tidyldimethyl-ethanolamine, a glycolipid and 
smaller amounts of phosphatidylglycerol, phos-
phatidylcholine and bisphosphatidylglycerol [38]. 
A survey on the cellular polyamine pattern of 
members of the order Planctomycetales revealed 
P. limnophilus strain Mü 290T to contain a large 
amount of putrescine and a relatively small 
amount of spermidine [8]. 

Table 1. Classification and general features of P. limnnphilus Mü 290T according to the MIGS recommendations [13] 
MIGS ID Property Term Evidence code 

 Current classification 

Domain Bacteria TAS [14] 

Phylum Planctomycetes TAS [15] 

Class Planctomycetacia TAS [15] 

Order Planctomycetales TAS [16] 

Family Planctomycetaceae TAS [16] 

Genus Planctomyces TAS [3-5,17] 

Species Planctomyces limnophilus TAS [1] 

Type strain Mü 290 TAS [1] 

 Gram stain negative TAS [1] 

 Cell shape 
spherical to ovoid mother cells with stalks 
composed of twisted fibrils, sessile mothercells 
produces motile daughter cells 

TAS [1] 

 Motility monotrichously and polarly flagellated TAS [1] 

 Sporulation non-sporulating TAS [1] 

 Temperature range 17–39°C TAS [1] 

 Optimum temperature 30-32°C TAS [1] 

 Salinity < 1% NaCl TAS [1] 

MIGS-22 Oxygen requirement aerobic TAS [1] 

 Carbon source D-glucose, D-galactose, maltose, cellobiose, 
N-acetyl glucosamine 

TAS [1] 

 Energy source carbohydrates TAS [1] 

MIGS-6 Habitat lakes and pools TAS [1] 

MIGS-15 Biotic relationship free-living TAS [1] 

MIGS-14 Pathogenicity not reported NAS 

 Biosafety level 1 TAS [18] 

 Isolation surface water of a lake TAS [1] 

MIGS-4 Geographic location Lake Plußsee, Holstein, Germany TAS [1,19] 

MIGS-5 Sample collection time 1977 or before TAS [1,19] 
MIGS-4.1 
MIGS-4.2 

Latitude  
Longitude 

54.182 
10.445 NAS 

MIGS-4.3 Depth surface waters NAS 

MIGS-4.4 Altitude about sea level NAS 

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed 
for the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evi-
dence). These evidence codes are from of the Gene Ontology project [20]. If the evidence code is IDA, then 
the property was directly observed by one of the authors or an expert mentioned in the acknowledgements 
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Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [39], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [40]. The genome project is depo-
sited in the Genome OnLine Database [32] and the 

complete genome sequence is deposited in Gen-
Bank. Sequencing, finishing and annotation were 
performed by the DOE Joint Genome Institute 
(JGI). A summary of the project information is 
shown in Table 2. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Two genomic libraries: 
one Sanger 8 kb pMCL200 library, one 454 
pyrosequence standard library 

MIGS-29 Sequencing platforms ABI3730, 454 GS FLX, Illumina GAii 
MIGS-31.2 Sequencing coverage 4.8× Sanger; 19.1× pyrosequence 
MIGS-30 Assemblers Newbler version 1.1.02.15, PGA 
MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 INSDC ID 
CP001744 chromosome 
CP001745 plasmid 

 Genbank Date of Release May 17, 2010 
 GOLD ID Gc01328 
 NCBI project ID 29411 
 Database: IMG-GEBA 2501533208 
MIGS-13 Source material identifier DSM 3776 
 Project relevance Tree of Life, GEBA 

Growth conditions and DNA isolation 
P. limnophilus Mü 290T, DSM 3776, was grown in 
DSMZ medium 621 (PYGV medium) [41] at 28°C. 
DNA was isolated from 0.5-1 g of cell paste using 
Qiagen Genomic 500 DNA Kit (Qiagen, Hilden, 
Germany) following the standard protocol as rec-
ommended by the manufacturer, with doubled 
incubation time (1 hour) for cell lysis. 

Genome sequencing and assembly 
The genome was sequenced using a combination 
of Sanger and 454 sequencing platforms. All gen-
eral aspects of library construction and sequenc-
ing can be found at the JGI website. Pyrosequenc-
ing reads were assembled using the Newbler as-
sembler version 1.1.02.15 (Roche). Large Newbler 
contigs were broken into 6,078 overlapping frag-
ments of 1,000 bp and entered into assembly as 
pseudo-reads. The sequences were assigned quali-
ty scores based on Newbler consensus q-scores 
with modifications to account for overlap redun-
dancy and adjust inflated q-scores. A hybrid 
454/Sanger assembly was made using the parallel 
phrap assembler (High Performance Software, 
LLC). Possible mis-assemblies were corrected and 
gaps between contigs were closed by editing in 
Consed, by custom primer walks from sub-clones 

or PCR products. A total of 18 Sanger finishing 
reads were produced to close gaps, to resolve re-
petitive regions, and to raise the quality of the fi-
nished sequence. Illumina reads were used to im-
prove the final consensus quality using an in-
house developed tool (the Polisher) [42]. The er-
ror rate of the completed genome sequence is less 
than 1 in 100,000. Together, the combination of 
the Sanger and 454 sequencing platforms pro-
vided 23.9× coverage of the genome. The final as-
sembly contains 43,393 Sanger reads and 544,012 
pyrosequencing reads. 

Genome annotation 
Genes were identified using Prodigal [43] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [44]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGRFam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [45]. 

http://www.jgi.doe.gov/�
http://prodigal.ornl.gov/�
http://geneprimp.jgi-psf.org/�
http://img.jgi.doe.gov/cgi-bin/m/main.cgi�
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Genome properties 
The genome consists of a 5,460,075 bp long chro-
mosome and a 37,010 bp long plasmid with a total 
G+C content of 53.7% (Table 3 and Figure 3). Of 
the 4,370 genes predicted, 4,304 were protein-

coding genes, and 66 RNAs; 46 pseudogenes were 
also identified. The majority of the protein-coding 
genes (53.9%) were assigned a putative function 
while the remaining ones were annotated as hypo-
thetical proteins. The distribution of genes into 
COGs functional categories is presented in Table 4. 

Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 5,446,085 100.00% 
DNA coding region (bp) 4,619,194 84.60% 
DNA G+C content (bp) 2,931,217 53.68% 
Number of replicons 2  
Extrachromosomal elements 1  
Total genes 4,370 100.00% 
RNA genes 66 1.51% 
rRNA operons 1  
Protein-coding genes 4,304 98.49% 
Pseudo genes 46 1.05% 
Genes with function prediction 2,355 53.89% 
Genes in paralog clusters 353 8.08% 
Genes assigned to COGs 2,463 56.36% 
Genes assigned Pfam domains 2,691 61.58% 
Genes with signal peptides 1,008 23.07% 
Genes with transmembrane helices 1,126 25.77% 
CRISPR repeats 1  

 
Figure 3. Graphical circular map of the chromosome and the plasmid (not drawn to scale). From outside to the 
center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), 
RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 4. Number of genes associated with the general COG functional categories 

Code value %age Description 

J 149 5.2 Translation, ribosomal structure and biogenesis 

A 0 0.0 RNA processing and modification 

K 172 6.0 Transcription 

L 141 4.9 Replication, recombination and repair 

B 1 0.0 Chromatin structure and dynamics 

D 22 0.8 Cell cycle control, cell division, chromosome partitioning 

Y 0 0.0 Nuclear structure 

V 67 2.3 Defense mechanisms 

T 168 5.8 Signal transduction mechanisms 

M 166 5.8 Cell wall/membrane/envelope biogenesis 

N 150 5.2 Cell motility 

Z 0 0.0 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 178 6.2 Intracellular trafficking, secretion, and vesicular transport 

O 124 4.3 Posttranslational modification, protein turnover, chaperones 

C 161 5.6 Energy production and conversion 

G 154 5.4 Carbohydrate transport and metabolism 

E 192 6.7 Amino acid transport and metabolism 

F 54 1.9 Nucleotide transport and metabolism 

H 127 4.4 Coenzyme transport and metabolism 

I 73 2.5 Lipid transport and metabolism 

P 148 5.1 Inorganic ion transport and metabolism 

Q 54 1.9 Secondary metabolites biosynthesis, transport and catabolism 

R 370 12.9 General function prediction only 

S 206 7.2 Function unknown 

- 1,907 43.6 Not in COGs 
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