
Standards in Genomic Sciences (2011) 5:1-11 DOI:10.4056/sigs.1884581 

 The Genomic Standards Consortium 

Draft genome sequence of the coccolithovirus EhV-84 

Jozef I. Nissimov1, Charlotte A. Worthy1,2, Paul Rooks1, Johnathan A. Napier2, Susan A. 
Kimmance1, Matthew R Henn3, Hiroyuki Ogata4, Michael J. Allen1* 

1Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth, PL1 3DH, UK 
2Department of Biological Chemistry, Rothamsted Research, Harpenden, Herts AL5 
2JQ 
3The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States 
of America 
4Structural and Genomic Information Laboratory, CNRS-UPR2589, Mediterranean Institute 
of Microbiology (IFR-88), Aix-Marseille University, 163 avenue de Luminy Case 934, FR-
13288 Marseille, France 

*Corresponding author: Michael J. Allen (mija@pml.ac.uk) 

Keywords: coccolithovirus, marine, phycodnavirus, algae, virus 

The Coccolithoviridae is a recently discovered group of viruses that infect the marine coccoli-
thophorid Emiliania huxleyi. Emiliania huxleyi virus 84 (EhV-84) has a 160 -180 nm diameter 
icosahedral structure and a genome of approximately 400 kbp. Here we describe the struc-
tural and genomic features of this virus, together with a near complete draft genome se-
quence (~99%) and its annotation. This is the fourth genome sequence of a member of the 
coccolithovirus family. 

Introduction 
Coccolithoviruses infect the cosmopolitan marine 
microalgae, Emiliania huxleyi [1]. These algae are 
capable of forming vast blooms which can be seen 
from space and can cover up to 100, 000 km2 oc-
curring in the top 50-100 m of the water column, 
with a cellular density of more than a million cells 
per liter of seawater [2]. E. huxleyi has become a 
species crucial to the study of global biogeochemi-
cal cycling [3-5]. The elegant calcium carbonate 
scales (known as coccoliths) which it produces 
intracellularly and the scale of its blooms have 
made E. huxleyi an essential model organism for 
marine primary productivity and global carbon 
cycling [6]. Coccolithoviruses have been shown to 
be a major cause of coccolithophore bloom termi-
nation and their pivotal role in global biogeochem-
ical cycling has gained increasing attention. Cocco-
lithovirus abundances typically reach 107 per ml 
in natural seawater under bloom conditions and 
108 -109 per ml under laboratory culture. The 
model coccolithovirus strain EhV-86 (AJ890364), 
and two other similar but genetically distinct 
strains, EhV-84 and EhV-88 were isolated in 1999 
from a coccolithophore bloom in the English 
Channel. EhV-86 was sequenced in its entirety in 

2005 to reveal a genome of 407,339 bp. Two fur-
ther strains, EhV-163 and EhV-99B1 were isolated 
in 2000 and 1999 respectively from a Norwegian 
fjord and have had their partial genomes also se-
quenced [7,8]. All coccolithoviruses known to date 
have been isolated from the English Channel and a 
Norwegian fjord. Here we present a summary 
classification and a set of features for coccolithovi-
rus strain EhV-84, the second English Channel 
coccolithovirus sequenced, together with the de-
scription of the sequencing and annotation of its 
genome. 

Classification and features 
All coccolithoviruses to date have been isolated 
from E. huxleyi algal blooms in temperate and sub 
temperate oceanic waters. Maximum likelihood 
phylogenetic analysis of available DNA polyme-
rase gene sequences (DNA pol), one of the viral 
kingdom’s phylogenetic markers (equivalent to 
16S rDNA sequences in bacteria) indicates that the 
closest related viral strain to EhV-84 is EhV-86 
and EhV-88 (Figure 1). Both of these strains were 
isolated from the English Channel in the same year 
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as EhV-84 [13]. The English Channel EhVs that 
were isolated in 1999 (EhV-84, EhV-86 and EhV-
88) are more similar to other strains from the 
English Channel such as EhV-201, EhV-203, EhV-
207 and EhV-208 isolated two years later in 2001, 
than strains such as EhV-163 and EhV-99B1 that 
are from a different geographical location; i.e. a 
Norwegian fjord. Interestingly EhV-202 seems to 
be the most different of all strains sequenced to 
date and this is also evident from full genome se-
quencing (data not published). Other algal viruses 
such as Paramecium bursaria Chlorella virus 

(PBCV-1), Micromonas pusilla virus SP1 (MpV-
SP1), Chrysochromulina brevifilum virus PW1 
(CbV-PW1), Ectocarpus siliculosus virus 1 (EsV-1), 
Heterosigma akashiwo virus 01 (HaV-01) are in-
cluded here as an additional reference and they 
cluster outside the EhVs genus. The EhV-84 virion 
structure has icosahedral morphology, a diameter 
of 160 -180 nm (Figure 2), and is similar to other 
coccolithoviruses (and phycodnaviruses in gener-
al) [14]. Isolation and general phylogenetic cha-
racteristics are outlined in Table 1. 

 
Figure 1. Multiple Sequence Alignment of the DNA pol (DNA polymerase) gene of ten 
coccolithoviruses (EhVs) and five other algal viruses. The evolutionary history was inferred 
using the Neighbor-Joining method [9]. The bootstrap consensus tree inferred from 1000 
replicates is taken to represent the evolutionary history of the taxa analyzed [10]. The per-
centage of replicate trees in which the associated taxa clustered together in the bootstrap 
test (1000 replicates) are shown next to the branches when greater than 50% [10]. The 
evolutionary distances were computed using the Maximum Composite Likelihood method 
[11] and are in the units of the number of base substitutions per site. All positions contain-
ing gaps and missing data were eliminated from the dataset (Complete deletion option). 
Phylogenetic analyses were conducted in MEGA4 [12]. 
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Table 1. Classification and general features of Emiliania huxleyi virus 84 according to the MIGS recommendations [15]. 
MIGS ID Property Term Evidence code 

 

Current classification 

Domain: Viruses, dsDNA viruses, no RNA stage TAS [16]  

 Class: NCLDNA (Nucleo-Cytoplasmic Large DNA) TAS [16] 

 Family: Phycodnaviridae TAS [16] 

 Genus: Coccolithovirus TAS [16] 

 Species: Emiliania huxleyi virus 84 TAS [16] 

 Virion shape Icosahedral IDA 

MIGS-6 Habitat Oceanic, Coastal TAS [16] 

MIGS-15 Biotic relationship Obligate intracellular parasite of Emiliania huxleyi TAS [16] 

MIGS-14 Pathogenicity Lytic virus of Emiliania huxleyi TAS [16] 

MIGS-4 Geographic location English Channel, UK TAS [16] 

MIGS-5 Sample collection time July 26, 1999 TAS [16] 

MIGS-4.1 Latitude 50.15 N TAS [16] 

MIGS-4.2 Longitude 4.13 E TAS [16] 

MIGS-4.3 Depth 15 m TAS [16] 

Evidence codes - IDA: Inferred from Direct Assay; TAS: Traceable Author Statement (i.e., a direct report exists in 
the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, isolated sample, 
but based on a generally accepted property for the species, or anecdotal evidence). These evidence codes are 
from the Gene Ontology project [17]. 

 
Figure 2. Transmission electron micrograph of an EhV-84 virion. 

http://standardsingenomics.org/�


Coccolithovirus EhV-84 

4 Standards in Genomic Sciences 

Genome sequencing and annotation 
Genome project history 
The Marine Microbiology Initiative (MMI) of the 
Gordon & Betty Moore Foundation aims to gener-
ate new knowledge about the composition, func-
tion, and ecological role of the microbial commun-
ities that serve as the basis of the  food webs of the 
oceans and that facilitate the flow of nitrogen, car-
bon, and energy in the ocean. In an effort to un-
derstand the ecology and evolution of marine 
phage and viruses and to explore the diversity and 
ecological roles of entire phage/viral communities 
through metagenomics, the Broad Institute colla-
borated with MMI and researchers whose se-
quencing nominations were chosen by the Marine 
Phage, Virus, and Virome Selection Committee to 
generate genomic sequence and annotation of eco-
logically important phage. EhV-84 was nominated 

for sequencing on the basis of its global impor-
tance in the demise of E. huxleyi blooms [13], the 
horizontal gene transfer events observed in other 
coccolithovirus genomes [18], the metabolic po-
tential displayed by its large genome size and its 
possible manipulation of signaling pathways such 
as programmed cell death in its host organism 
[8,19]. 
The genome project is deposited in the The Inte-
grated Microbial Genomes (IMG) system and the 
complete genome sequence and annotation are 
available in GenBank (JF974290). Genome se-
quencing, finishing and annotation were per-
formed by the Broad Institute. A summary of the 
project information is shown in Table 2. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished (>99%) 

 Number of contigs 9 

 Average contig size 43,980 

 Largest contig size 97,445 

 Assembly size (using large contigs)  395,820 

 Assembly coverage ("peak Depth") 36.16 

 Total number of reads used 28,526 

MIGS-29 Sequencing platforms 454 

MIGS-30 Assemblers Newbler Version 2.3 PostRelease-11.19.2009 

MIGS-32 Gene calling method Broad Institute Automated Phage Annotation Protocol [20] 

 GenBank ID JF974290 

 GOLD ID N/A 

 
Project relevance 

Gordon & Betty Moore Foundation's Marine Microbiology 
Initiative. Emiliania huxleyi virus 84- G3248. 

 
Growth conditions and DNA isolation 
Emiliania huxleyi strain CCMP 2090 was grown in 
1 liter cultures (f/2 nutrient media) in the labora-
tory under a light/dark cycle of 16/8 respectively, 
at a temperature of 16°C. Once the cultures were 
at mid exponential growth (i.e. 4 × 106 ml-1), they 
were infected with an EhV-84 lysate at an MOI ra-
tio of 1:1. Infection, host death and viral produc-
tion were confirmed by flow cytometry. Fresh vi-
rus lysate was filtered through a 0.2 µm pore 47 
mm diameter Durapore filter (Millipore). Viruses 
were concentrated by PEG precipitation, subjected 
to a CsCl gradient and the DNA extracted [8,21]. 

Genome sequencing and assembly 
The genome of strain EhV-84 was sequenced us-
ing the 454 FLX pyrosequencing platform 
(Roche/454, Branford, CT, USA). Library construc-
tion, and sequencing were performed as previous-
ly described [20]. General protocols for library 
construction can be found at [22]. De novo genome 
assembly of resulting reads was performed using 
the Newbler v2.3 assembly software package as 
previously described [20]. Assembly metrics are 
as described in Table 3. 
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Table 3. De novo assembly metrics for EhV-84 

No. of Reads 
Assembled 

No. of Contigs 
Largest Contig 

(bp) 
Total Contig 
Length (bp)* 

Average 
Contig 

Sequence 
Coverage 

Percent of 
Bases Q40 

28,526 9 97,445 395,820 36.9 ± 3.6 94.9 

*Total contig length does not include bp for gaps of unknown size 

Genome annotation 
Genes were identified using the Broad Institute 
Automated Phage Annotation Protocol as pre-
viously described [20]. In short, evidence based 
and ab initio gene prediction algorithms where 
used to identify putative genes followed by con-
struction of a consensus gene model using a rules-
based evidence approach. Gene models where 
manually checked for errors such as in-frame 
stops, very short proteins, splits, and merges. Ad-
ditional gene prediction analysis and functional 
annotation was performed within the Integrated 
Microbial Genomes – Expert Review platform [23]. 

Genome properties 
General features of the EhV-84 genome sequence 
(Table 4) include a nucleotide composition of 
40.17% G+C (Figure 3), a total of 482 predicted 
protein coding genes and four tRNA genes (encod-
ing amino acids Arg, Asn, Gln and Ile). Of the 482 
CDSs, 85 (17.49%) have been annotated with 
functional product predictions (Table 4) and the 

genes have been categorized into COGs functional 
groups (Table 5). 

Insights from the genome sequence 
Comparative genomics 
EhV-84 is now the fourth coccolithovirus strain to 
have its genome determined. EhV-84 displays a 
near identical G+C content to EhV-86; i.e. 40.17% 
and 40.18% respectively. EhV-84 is predicted to 
encode 482 coding sequences (including 18 pseu-
dogenes) and four tRNA genes (Arg, Asn, Gln and 
Ile), whereas EhV-86 has 472 CDSs and five tRNAs 
(Arg, Asn, Gln, Ile and Leu). Two of the EhV-84 
tRNAs are identical in length and sequence to 
tRNAs in EhV-86 (Gln, 72 bases; Asn, 74 bases), 
one is 98% similar (Arg, 72 bases in EhV-84; 73 
bases in EhV-86). However, the Ile tRNA of EhV-84 
varies dramatically, containing a 26 base intron 
insertion (99 bases in EhV-84; 73 bases in EhV-
86). EhV-86 has an extra Leu (103 bases) that is 
absent from the genome of EhV-84. 

Table 4. Genome statistics of EhV-84 
Attribute Value % of totala 

Size (bp) 396,620 100.00% 

G+C content (bp) 158,983 40.17% 

Coding region (bp) 334,463 84.33% 

Total genesb 486 100.00% 

RNA genes 4 0.82% 

Protein-coding genes 482 99.18% 

Protein coding genes with function prediction 85 17.49% 

Genes in paralog clusters 15 3.09% 

Genes with signal peptides 142 29.22% 
aThe total is based on either the size of the genome in base pairs or the to-
tal number of protein coding genes in the annotated genome, where appli-
cable. 
bIncludes 18 pseudogenes. 
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Figure 3. Graphical circular map of the 396,620 bp EhV-84 genome. The outside scale is numbered clock-
wise in bp. Circles 1 and 2 (from outside in) denotes CDSs (forward and reverse strands, respectively). Circle 
3 represents the nine contigs of the genome that were used to construct the draft genome using the EhV-86 
genome as the reference, and circle 4 is the G+C content. 

 
There are 224 CDSs in EhV-84 which share 100% 
sequence identity (TBLASTN) with homologues in 
EhV-86. A further 198 CDSs have non-identical ho-
mologues in EhV-86, with similarities greater than 
10%  (settings in IMG/ER: TBLASTN, Max e-value 
1e-5, min. percent identity 10, algorithm by 
present/absent homologs, min. taxon percent with 
homologs 100, min. taxon percent without homo-
logs 100). Of the CDSs shared between EhV-84 and 
EhV-86, 69 have an assigned function in EhV-86 
that also corresponds to sequences in the Con-
served Domain Database (Table 6). More than half 
(38/69) are identical in both strains. In addition, 
there are a further 60 annotated CDSs in EhV-84 

which have no homologues in EhV-86, two of which 
have homologues in EhV-99B1 (ENVG00303 and 
ENVG00419, encoding a hypothetical protein and 
zinc finger protein, respectively). Three of the 
unique EhV-84 CDSs show similarity to sequences 
in the Conserved Domain Dataset [23]. ENVG00283 
contains a transposase DNA-binding domain and is 
1,953 bp long. This domain is commonly found at 
the C-terminus of a large number of transposase 
proteins. ENVG00294 contains a DNA polymerase 
III gamma and tau subunit domain and is 1,551 bp 
long and ENVG00066 contains a methyltransferase 
type FkbM family domain and is 908 bp long. 
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Table 5. Number of genes associated with COG functional categories. 
Code value %age Description 

G 1 1.41 Carbohydrate transport and metabolism 

D 3 4.23 Cell cycle control, cell division, chromosome partitioning 

M 2 2.82 Cell wall/membrane/envelope biogenesis 

H 2 2.82 Coenzyme transport and metabolism 

S 6 8.45 Function unknown 

R 7 9.86 General function prediction only 

P 1 1.41 Inorganic ion transport and metabolism 

U 2 2.82 Intracellular trafficking, secretion, and vesicular transport 

I 5 7.04 Lipid transport and metabolism 

F 6 8.45 Nucleotide transport and metabolism 

O 8 11.27 Posttranslational modification, prot. turnover, chaperones 

L 11 15.49 Replication, recombination and repair 

A 4 5.63 RNA processing and modification 

T 1 1.41 Signal transduction mechanisms 

K 12 16.90 Transcription 

Sphingolipid biosynthesis 
EhV-84 shares the same sphingolipid LCB biosyn-
thetic machinery as EhV-86 (all predicted compo-
nents share 100% sequence identity, see Table 6). 
Interestingly, like EhV-86, EhV-84 also lacks a crit-
ical sphingolipid LCB biosynthetic activity, 3-
ketosphinganine reductase [19]. There is now in-
creasing evidence to suggest that these viral 
sphingolipid genes encode proteins that act in 
conjunction with the algal host sphingolipid bio-
synthetic genes to generate bioactive lipid(s). In-
deed, ehv050 has been shown to encode a func-
tional serine myristoyl transferase, and its expres-
sion has been observed under both laboratory and 
natural environmental conditions [24-26]. The 
perfect conservation of these genes suggests both 
a strong selection pressure and/or a relatively re-
cent shared history between these EhV-84 and 
EhV-86 genes. The presence of the sphingolipid 
pathway on coccolithovirus genomes emphasizes 
the important co-evolutionary dynamics that oc-
cur within natural oceanic communities: the genes 
are examples of horizontal gene transfer events 
between the viruses and their host. 

Phylogeny: DNA pol and MCP 
Two genes, encoding DNA polymerase (DNA pol) 
and the capsid protein (MCP) have been exten-
sively used as marker genes for different EhV 

strains within the phycodnavirus family and for 
the study of coccolithovirus diversity [24,27,28]. 
In EhV-86 the MCP gene (ehv085) is 1,602 bp long 
and DNA pol (ehv030) is 3,039 bp long. These pro-
tein coding sequences are often viewed as the vir-
al kingdom’s equivalent to 16S rDNA marker 
genes in bacteria, and are therefore commonly 
used in phylogenetic studies (Figure 1) [29]. DNA 
pol seems to be highly conserved in coccolithovi-
ruses. For instance, despite their large size, 
ehv030 in the reference genome of EhV-86 and its 
homolog ENVG00144 in EhV-84 share a 100% 
identity to each other at the nucleotide level. In 
contrast, the MCP gene of EhV-86 (ehv085) and its 
homolog in EhV-84 (ENVG00202) are more varia-
ble, particularly in the 5′ and 3′ regions. Asso-
ciated structural differences in MCP as a conse-
quence of this variation may form the bases of the 
phenotypic diversity displayed by the coccolitho-
viruses with regards to host range. Such structural 
differences may also benefit the virus in its pur-
pose of successfully infecting and attaching to the 
targeted host cells. The evolutionary arms race 
between the host and the virus is something that 
the virus must take into account and adapt to; and 
this might explain why this gene is so variable be-
tween strains.  

http://standardsingenomics.org/�
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These two common marker genes reveal an inter-
esting pattern between EhV-86 and EhV-84. On 
the whole, the genomes are highly similar, yet sub-
tle and some large (and potentially crucial) genet-
ic differences do occur. The apparent difference in 
evolutionary divergence rates of core components 
such as DNA pol and MCP genes is intriguing and 
suggests that lateral transfer of material between 

different coccolithovirus genomes may be preva-
lent in the natural environment. The DNA pol gene 
may have a more recent shared evolutionary his-
tory than its MCP counterpart in the EhV-86/EhV-
84 system. Through the sequencing of further 
strains we hope to shed light on this intriguing 
dynamic. 

Table 6. CDSs with functional predictions identified in both EhV-84 and EhV-86 genomes [1]†. 

CDS EhV-86 homologs (putative function/feature) 
Identity to EhV-86 

homologue (%) 

ENVG 00127 ehv014 Longevity-assurance (LAG1) family protein 100 
ENVG 00131 ehv018 flap endonuclease-1 100 
ENVG 00133 ehv020 putative proliferating cell nuclear antigen 99.61 
ENVG 00134 ehv021 putative serine protease 100 
ENVG 00135 ehv022 phosphoglycerate mutase family protein 99.07 
ENVG 00136 ehv023 putative deoxycytidylate (dCMP) deaminase 98.27 
ENVG 00139 ehv026 ribonucleoside-diphosphate reductase small subunit 99.38 
ENVG 00142 ehv028 putative lipase 100 
ENVG 00144 ehv030 putative DNA polymerase delta catalytic subunit 100 
ENVG 001451 ehv031 putative sterol desaturase 100 
ENVG 00149 ehv035 putative membrane protein 100 
ENVG 00156 ehv041 putative endonuclease 58.33 
ENVG 001651 ehv050 serine myristoyl transferase 100 
ENVG 00176 ehv060 putative lectin protein 100 
ENVG 001772 ehv061 putative fatty acid desaturase 100 
ENVG 00178 ehv062 putative membrane protein 100 
ENVG 00180 ehv064 DNA-dependent RNA polymerase II largest subunit 100 
ENVG 00181 ehv064 DNA-dependent RNA polymerase II largest subunit beta 100 
ENVG 001941 ehv077 putative transmembrane fatty acid elongation protein 100 
ENVG 001961 ehv079 putative lipid phosphate phosphatase 100 
ENVG 00202 ehv085 major capsid protein 99.81 
ENVG 00205 ehv088 putative membrane protein 99.02 
ENVG 00382 ehv101 putative hydrolase 100 
ENVG 00380 ehv103 putative vesicle-associated membrane protein 100 
ENVG 00379 ehv104 putative DNA helicase 99.81 
ENVG 00378 ehv105 transcription factor S-II (TFIIS) family protein 100 
ENVG 00375 ehv108 putative DNA-directed RNA polymerase subunit 100 
ENVG 00374 ehv109 OTU-like cysteine protease 100 
ENVG 00373 ehv110 putative RING finger protein 100 
ENVG 00370 ehv113 bifunctional dihydrofolate reductase-thymidylate synthase 99.79 
ENVG 00367 ehv116 putative membrane protein 100 
ENVG 00366 ehv117 putative phosphate permease/ sodium-phosphate symporter 100 
ENVG 00356 ehv128 ERV1/ALR family protein 98.22 
ENVG 00353 ehv131 putative membrane protein 95.08 
ENVG 00351 ehv133 putative ATP-dependent protease proteolytic subunit 97.90 
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Table 6 (cont.) CDSs with functional predictions identified in both EhV-84 and EhV-86 genomes [1]†. 

CDS EhV-86 homologs (putative function/feature) 
Identity to EhV-86 

homologue (%) 

ENVG 00348 ehv136 putative nucleic acid-binding protein 98.58 
ENVG 00293 ehv137 putative membrane protein 24.90 
ENVG 00429 ehv151 putative serine protease 96.94 
ENVG 00399 ehv166 putative RING finger protein 97.93 
ENVG 00400 ehv167 putative DNA-directed RNA polymerase subunit 100 
ENVG 00413 ehv179 Major Facilitator Superfamily protein/transporter  99.63 
ENVG 00423 ehv187 putative membrane protein 72.00 
ENVG 00445 ehv192 putative membrane protein 94.06 
ENVG 00478 ehv207 putative membrane protein 100 
ENVG 00287 ehv230 putative endonuclease V 99.22 
ENVG 00307 ehv246 putative lectin protein 96.46 
ENVG 00232 ehv315 putative membrane protein 100 
ENVG 00264 ehv349 putative protease 100 
ENVG 00273 ehv358 putative thioredoxin 98.73 
ENVG 00276 ehv361 putative serine protease 97.14 
ENVG 00278 ehv363 putative esterase 97.72 
ENVG 00002 ehv364 putative membrane protein 100 
ENVG 00295 ehv364 putative membrane protein 34.55 
ENVG 00035 ehv397 putative deoxyuridine 5'-triphosphate nucleotidohydrolase 100 
ENVG 00037 ehv399 putative DNA-directed RNA polymerase subunit 100 
ENVG 00039 ehv401 putative ribonuclease Hll 99.52 
ENVG 000542 ehv415 putative delta 9 acyl- lipid fatty acid desaturase 100 
ENVG 00055 ehv416 putative membrane protein 100 
ENVG 00070 ehv428 putative ribonucleoside-diphosphate reductase protein 98.79 
ENVG 00074 ehv431 putative thymidylate kinase 99.69 
ENVG 00077 ehv434 putative DNA-directed RNA polymerase II subunit B 99.74 
ENVG 00083 ehv440 putative proliferating cell nuclear antigen 100 
ENVG 00087 ehv444 putative DNA topoisomerase 99.64 
ENVG 00091 ehv447 putative serine protease 100 
ENVG 00095 ehv451 putative protein kinase 100 
ENVG 00097 ehv453 putative mRNA capping enzyme 99.47 
ENVG 00100 ehv455 putative sialidase 100 
ENVG 00104 ehv459 putative nucleic acid independent nucleoside triphosphatase 100 
ENVG 00111 ehv465 putative thioredoxin protein 100 

†including their sequence homologs (coding sequences) in EhV-84 based on TBLASTN (translated nucleotide  
database) 
1genes involved in sphingolipid biosynthesis 
2genes encoding desaturases 

Conclusions 
EhV-84 is the fourth member of the coccolithovi-
rus family to be sequenced to date. The genome 
reveals novel putative protein coding sequences, 
many of which have no current matches in the se-
quence databases. Many of the CDSs identified 
display high conservation with their counterparts 

in EhV-86, while a handful of highly variable CDSs 
suggest roles in evolutionary adaptation to their 
hosts and environment. Further sequencing of re-
lated strains will no doubt reveal more about the 
genetic and functional diversity of these cosmopo-
litan and environmentally important viruses. 
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