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Saccharomonospora viridis (Schuurmans et al. 1956) Nonomurea and Ohara 1971 is the type 
species of the genus Saccharomonospora which belongs to the family Pseudonocardiaceae. S. 
viridis is of interest because it is a Gram-negative organism classified among the usually 
Gram-positive actinomycetes. Members of the species are frequently found in hot compost 
and hay, and its spores can cause farmer’s lung disease, bagassosis, and humidifier fever. 
Strains of the species S. viridis have been found to metabolize the xenobiotic pentachloro-
phenol (PCP). The strain described in this study has been isolated from peat-bog in Ireland. 
Here we describe the features of this organism, together with the complete genome sequence, 
and annotation. This is the first complete genome sequence of the family Pseudonocardia-
ceae, and the 4,308,349 bp long single replicon genome with its 3906 protein-coding and 64 
RNA genes is part of the Genomic Encyclopedia of Bacteria and Archaea project. 

Introduction
Strain P101T (= DSM 43017 = ATCC 15386 = JCM 
3036 = NCIMB 9602) is the type strain of Saccha-
romonospora viridis, and the type species of the 
genus Saccharomonospora [1,2], which currently 
contains eight species [3]. Although phylogeneti-
cally a member of the Gram-positive actinomy-
cetes, already the initial report on S. viridis strain 
P101T noticed the astonishing feature of the or-
ganism to be Gram-negative, despite showing the 
typical mycelium morphology of Saccharomonos-
pora [2]. Like in other actinomycetes, spores of S. 
viridis are readily dispersed in air, and the pro-
longed exposure to spores can apparently result in 

acute respiratory distress (farmer’s lung disease) 
which may lead to irreversible lung damage [4,5]. 
Here we present a summary classification and a 
set of features for S. viridis P101T, together with 
the description of the complete genomic sequenc-
ing and annotation. 

Classification and features 
Members of the species S. viridis have been iso-
lated or molecularly identified on several occa-
sions from hot composts in Europe and USA [12-
14,17], and also from soil in Japan [1]. One novel, 
yet unpublished, cultivated member of the species 
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has been reported by Lu and Liu from Chinese soil 
(AF127525). Uncultured clone sequences with 
significant (99%) sequence similarity were ob-
served from composting mass in China 
(AM930281 and AM930338). Screening of envi-
ronmental genomic samples and surveys reported 
at the NCBI BLAST server indicated no closely 
related phylotypes that can be linked to the spe-
cies or genus, with the closest matches (about 90% 

sequence similarity) to strain P101T 16S rRNA 
identified in a marine metagenome from the Sar-
gasso Sea [18]. 
Figure 1 shows the phylogenetic neighborhood of S. 
viridis strain P101T in a 16S rRNA based tree. The 
sequences of all three copies of the 16S rRNA gene 
are identical and perfectly match the previously 
published 16S rRNA sequence generated from 
NCIMB 9602 (Z38007). 

 
Figure 1. Phylogenetic tree of S. viridis strain P101T and all type strains of the genus Saccharomo-
nospora inferred from 1,474 aligned characters [19,20] of the 16S rRNA gene under the maximum 
likelihood criterion [21]. The tree was rooted with all type strains of the members of the genus 
Prauserella, another genus in the family Pseudonocardiaceae. The branches are scaled in terms of 
the expected number of substitutions per site. Numbers above branches are support values from 
1,000 bootstrap replicates if larger than 60%. Lineages with type strain genome sequencing 
projects registered in GOLD [22] are shown in blue, published genomes in bold. 

 

The hyphae of the vegetative mycelium of strain 
P101T are branched and sometimes show curved 
endings [12]. Single spores are observed only on 
the aerial mycelium either directly on the hyphae 
or on short sporophores (Table 1 and Figure 2). The 
spores are oval, 0.9-1.1 µm × 1.2-1.4 µm in size. 
Only very occasionally two spores are observed. 
The aerial mycelium is either grayish green in 
color, or turns from white to greenish as on Cza-
pek Agar. The optimal temperature for growth is 
55°C, but 45°C for aerial mycelium formation and 
pigment production. At 37°C and 60°C the growth 
is very limited and without aerial mycelia. No 
growth occurs at 27°C and 70°C [12]. 
Strain P101T has been observed to be sensitive to 
a variety of phages [11]. Members of S. viridis are 
apparently able to metabolize pentachlorophenol 
but not other chlorophenols [14]. It was suggested 
that S. viridis metabolizes PCP by conjugation to 
form a more polar transformation product, but, 
unlike other PCP-degrading bacteria, the organism 
is incapable of effecting total degradation of the 
xenobiotic [14]. Microorganisms such as S. viridis 
may therefore contribute to PCP removal by mi-
crobial communities in situ, despite being unable 

to completely mineralize chlorophenols in pure 
culture [14]. S. viridis produces a thermostable α-
amylase which forms 63% (w/w) maltose on hy-
drolysis of starch [23]. Maltotriose and maltote-
traose are the only intermediate products ob-
served during this reaction, with maltotriose ac-
cumulating to 40% (w/w). Both unimolecular and 
multimolecular mechanisms (transfers and con-
densation) have been shown to occur during the 
concentration-dependent degradation of maltotri-
ose and maltotetraose. Such reactions result in the 
almost exclusive formation of maltose from malto-
triose at high initial concentration [23]. S. viridis 
produces thermoviridin, an antibiotic that is pri-
marily active against the Gram-positive bacteria 
(growth inhibition) [2,11]. At higher concentra-
tions, also Gram-negative bacteria were growth-
inhibited [2].  

Chemotaxonomy 
The murein of P101T is of cell wall type IV. It con-
tains meso-diaminopimelic acid in the peptidogly-
can and arabinose and galactose in whole-cell hy-
drolysates (sugar type A). Mycolic acids and tei-
chonic acids were not reported. Strain P101T con-
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tains menaquinones MK-9(H4) (60%) and MK-
8(H4) (20 to 30%). The combination of the tetra-
hydromultiprenyl menaquinones MK-9(H4) and 
MK-8(H4) is characteristic for the genus Saccha-
romonospora [11]. The major cellular fatty acids 
are saturated, iso-branched acids with 16 and 18 

carbon atoms, and 2-hydroxydodecanoic acids. 
Details are described in the Compendium of Acti-
nobacteria [10]. Phosphatidylethanolamine, hy-
droxy-phosphatidyl-ethanolamine, and lyso-phos-
phatidyl-ethanolamine were identified as the main 
phospholipids. 

Table 1. Classification and general features of S. viridis P101T according to the MIGS recommendations [6] 

MIGS ID Property Term 
Evidence 
code 

 

Current classification 

Domain Bacteria TAS [7] 
Phylum Actinobacteria TAS [8] 
Order Actinomycetales TAS [9] 
Suborder Pseudonocardineae TAS [9] 
Family Pseudonocardiaceae TAS [9] 
Genus Saccharomonospora TAS [1] 
Species Saccharomonospora viridis TAS [2] 
Type strain P101  

 Gram stain negative TAS [2] 
 Cell shape variable TAS [10] 
 Motility nonmotile NAS 

 Sporulation 
single spores mainly on aerial myce-
lium TAS [1] 

 Temperature range thermophile, 37-60°C TAS [11] 

 
Optimum temperature 55°C for growth, 45°C for aerial my-

celium formation 
TAS 
[1,11,12] 

 Salinity 7% NaCl TAS [11] 
MIGS-22 Oxygen requirement aerobic; nor reported if essential TAS [11] 

 Carbon source D-glucose, sucrose, dextrin TAS [11] 

 Energy source carbohydrates TAS [11] 

MIGS-6 Habitat 
peat and compost (species occur-
rence) 

TAS 
[1,4,12-14] 

MIGS-15 Biotic relationship free living  
MIGS-14 Pathogenicity lung damage TAS [4] 

 Biosafety level 1 TAS [15] 
 Isolation peat-bog at 250 cm depth TAS [12] 
MIGS-4 Geographic location Irish peat  

MIGS-5 
Sample collection 
time before 1963 TAS [12] 

MIGS-4.1 
MIGS-4.2 Latitude – Longitude not reported  
MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude not reported  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement (i.e., a 
direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for the living, 
isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). These evidence 
codes are from the Gene Ontology project [16]. If the evidence code is IDA, then the property was observed for a liv-
ing isolate by one of the authors, or an expert mentioned in the acknowledgements. 
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Figure 2. Scanning electron micrograph of S. viridis P101T 

Genome sequencing and annotation-
Genome project history 
This organispm was selected for sequencing on 
the basis of its phylogenetic position, and is part of 
the Genomic Encyclopedia of Bacteria and Archaea 
project. The genome project is deposited in the 
Genome OnLine Database [22] and the complete 
genome sequence in GenBank. Sequencing, finish-
ing and annotation were performed by the DOE 

Joint Genome Institute (JGI). A summary of the 
project information is shown in Table 2. 

Growth conditions and DNA isolation 
S. viridis strain P101T, DSM 43017, was grown in 
DSMZ medium 535 (Trypticase soy broth, ) at 
45°C. DNA was isolated from 1-1.5 g of cell paste 
using Qiagen Genomic 500 DNA Kit (Qiagen, Hil-
den, Germany) with a modified protocol, st/FT, for 
cell lysis, as described in Wu et al. [24]. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Two Sanger libraries - 8 kb pMCL200 
and fosmid pcc1Fos 

MIGS-29 Sequencing platforms ABI3730 
MIGS-31.2 Sequencing coverage 12.9  Sanger 
MIGS-30 Assemblers phrap 

MIGS-32 Gene calling method 
Genemark 4.6b, tRNAScan-SE-1.23, 
infernal 0.81, GenePRIMP 

 INSDC / Genbank ID CP001683 
 Genbank Date of Release August 26, 2009 
 GOLD ID Gc01088 
 NCBI project ID 20835 
 Database: IMG-GEBA 2500901760 
MIGS-13 Source material identifier DSM 43017 
 Project relevance Tree of Life, GEBA 

 
Genome sequencing and assembly
The genome was sequenced using Sanger se-
quencing platform only. All general aspects of li-

brary construction and sequencing can be found at 
the JGI website (http://www.jgi.doe.gov). The 
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Phred/Phrap/Consed software package was used 
for sequence assembly and quality assessment. 
After the shotgun stage reads were assembled 
with parallel phrap (High Performance Software, 
LLC). Possible mis-assemblies were corrected 
with Dupfinisher [25] or transposon bombing of 
bridging clones (Epicentre Biotechnologies, Madi-
son, WI). Gaps between contigs were closed by 
editing in Consed, custom primer walk or PCR 
amplification (Roche Applied Science, Indianapolis, 
IN). A total of 354 finishing reactions were pro-
duced to close gaps and to raise the quality of the 
finished sequence. The completed genome se-
quences of S. viridis contains 66,210 Sanger reads, 
achieving an average of 12.9  sequence coverage 
per base, with an error rate less than 1 in 100,000. 

Genome annotation 
Genes were identified using GeneMark [26] as part 
of the genome annotation pipeline in the Inte-
grated Microbial Genomes Expert Review (IMG-ER) 
system [27], followed by a round of manual cura-
tion using the JGI GenePRIMP pipeline 
(http://geneprimp.jgi-psf.org) [28]. The predicted 
CDSs were translated and used to search the Na-
tional Center for Biotechnology Information (NCBI) 
nonredundant database, UniProt, TIGRFam, Pfam, 
PRIAM, KEGG, COG, and InterPro databases. The 
tRNAScanSE tool [29] was used to find tRNA genes, 
whereas ribosomal RNAs were found by using the 
tool RNAmmer [30]. Other non coding RNAs were 
identified by searching the genome for the Rfam 

profiles using INFERNAL (v0.81) [31]. Additional 
gene prediction analysis and manual functional 
annotation was performed within the Integrated 
Microbial Genomes (IMG) platform [32]. 

Metabolic network analysis 
The metabolic Pathway/Genome Database (PGDB) 
was computationally generated using Pathway 
Tools software version 12.5 [33] and MetaCyc ver-
sion 12.5 [34], based on annotated EC numbers 
and a customized enzyme name mapping file. It 
has undergone no subsequent manual curation 
and may contain errors, similar to a Tier 3 BioCyc 
PGDB [35]. 

Genome properties 
The genome is 4,308,349 bp long and comprises 
one main circular chromosome with a 67.3% GC 
content (Table 3 and Figure 3). Of the 3,970 genes 
predicted, 3,906 were protein coding genes, and 
64 RNAs; 78 pseudogenes were also identified. 
The majority of the protein-coding genes (71.2%) 
were assigned with a putative function, while the 
remaining ones were annotated as having hypo-
thetical function. The properties and the statistics 
of the genome are summarized in Table 3. The dis-
tribution of genes into COGs functional categories 
is presented in Table 4 and a cellular overview dia-
gram is presented in Figure 4, followed by a sum-
mary of metabolic network statistics shown in 
Table 5. 

Table 3. Genome Statistics 
Attribute Value % of Total 

Genome size (bp) 4,308,349 100.00% 
DNA Coding region (bp) 3,805,483 88.33% 
DNA G+C content (bp) 2,900,171 67.32% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,970 100% 
RNA genes 64 1.61% 
rRNA operons 3  
Protein-coding genes 3,906 98.39% 
Pseudo genes 78 1.96% 
Genes with function prediction 2,828 71.23% 
Genes in paralog clusters 534 13.45% 
Genes assigned to COGs 2,709 68.24% 
Genes assigned Pfam domains 2,845 71.66% 
Genes with signal peptides 725 18.26% 
Genes with transmembrane helices 880 22.17% 
CRISPR repeats 9  
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Figure 3. Graphical circular map of the genome. From outside to the center: Genes on forward 
strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes 
(tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 

Table 4. Number of genes associated with the general COG functional categories 

Code Value % Description 
J 158 4.0 Translation, ribosomal structure and biogenesis 
A 1 0.0 RNA processing and modification 
K 276 7.1 Transcription 
L 125 3.2 Replication, recombination and repair 
B 1 0.0 Chromatin structure and dynamics 
D 25 0.6 Cell cycle control, mitosis and meiosis 
Y 0 0.0 Nuclear structure 
V 44 1.1 Defense mechanisms 
T 146 3.7 Signal transduction mechanisms 
M 125 3.2 Cell wall/membrane biogenesis 
N 2 0.1 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 27 0.7 Intracellular trafficking and secretion 
O 107 2.7 Posttranslational modification, protein turnover, chaperones 
C 214 5.5 Energy production and conversion 
G 214 5.5 Carbohydrate transport and metabolism 
E 293 7.5 Amino acid transport and metabolism 
F 85 2.2 Nucleotide transport and metabolism 
H 175 4.5 Coenzyme transport and metabolism 
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Table 4. Number of genes associated with the general COG functional categories 

Code Value % Description 

I 189 4.8 Lipid transport and metabolism 
P 146 3.7 Inorganic ion transport and metabolism 
Q 139 3.6 Secondary metabolites biosynthesis, transport and catabolism 
R 389 10.0 General function prediction only 
S 182 4.7 Function unknown 
- 1197 30.6 Not in COGs 

 
Figure 4. Cellular overview diagram. This diagram provides a schematic of all pathways of S. viridis 
strain P101T metabolism. Nodes represent metabolites, with shape indicating class of metabolite 
(see key to right). Lines represent reactions. 

Table 5. Metabolic Network Statistics 
Attribute Value 
Total genes 3,970 
Enzymes 880 
Enzymatic reactions 1,155 
Metabolic pathways 244 
Metabolites 863 
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