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The JCVI metagenomics analysis pipeline provides for the efficient and consistent annotation 
of shotgun metagenomics sequencing data for sampling communities of prokaryotic organ-
isms. The process can be equally applied to individual sequence reads from traditional San-
ger capillary electrophoresis sequences, newer technologies such as 454 pyrosequencing, or 
sequence assemblies derived from one or more of these data types. It includes the analysis of 
both coding and non-coding genes, whether full-length or, as is often the case for shotgun 
metagenomics, fragmentary. The system is designed to provide the best-supported conserva-
tive functional annotation based on a combination of trusted homology-based scientific evi-
dence and computational assertions and an annotation value hierarchy established through 
extensive manual curation. The functional annotation attributes assigned by this system in-
clude gene name, gene symbol, GO terms [1], EC numbers [2], and JCVI functional role cat-
egories [3]. 

Abbreviations: JCVI- J. Craig Venter Institute, GOS- Global Ocean Sampling, HMM- Hidden 
Markov Model, BLAST- Basic local alignment search tool, PANDA-  Protein and Nucleic Ac-
id Database, GO- Gene Ontology, EC- Enzyme Commission, ORF-  open reading frame, 
COG- Cluster of Orthologous Genes, ncRNA- non coding RNA, XML- Extensible Markup 
Language. 

Introduction 
Shotgun metagenomics sequencing datasets are 
among the most challenging types of biological 
information to successfully handle from the 
perspectives of both size and complexity [1]. 
Nonetheless, they represent the best method 
available for sampling the largely uncharacte-
rized diversity of microbes (and their array of 
functional genes) present in environmental sam-
ples [2,3]. In this context, the term “environmen-
tal” includes both traditional (e.g., soil, water, air) 
and host-based (e.g., oral biofilm, distal gut) 
samples. Moreover, this technique greatly 
enables the study of uncultivated organisms, 
which represent the vast majority of life in a 
number of biomes, including an astonishing 99% 
in soil [4]. 

The issue of how to handle this diversity and 
complexity became especially pressing at the time 
of JCVI’s Sargasso Sea and Global Ocean Survey 
expeditions [1,5], which each produced and re-
quired the analysis of several million Sanger 
reads. Although these data sets were revolutio-
nary in their size at the time, the switch from San-
ger to next-generation sequencing technologies 
for the study of environmental complexity has 
caused metagenomics data sets to become expo-
nentially larger and more complex [6,7]. Using the 
JCVI prokaryotic metagenomics analysis pipeline, 
we routinely process data an order of magnitude 
larger than the original Sargasso collection. 
In order to maximize scientific flexibility, the pro-
karyotic metagenomics pipeline, as reported here, 
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is compartmentalized into structural and func-
tional annotation components, which can be run 
together or separately. It is designed to process 
data sets of the scale of tens of millions of se-
quencing reads given JCVI’s current computing 
resources, and is scalable to even larger data sets. 
There are a number of systems other than the JCVI 
metagenomics pipeline designed for the purpose 
of rapid and consistent functional annotation of 
environmental shotgun sequencing data, including 
MG-RAST [8] and IMG/M [9]. 

Requirements 
The JCVI prokaryotic metagenomics pipeline is 
designed for significant input flexibility. Gene find-
ing, which is referred to in this paper as structural 

annotation, requires as input a multi fasta file con-
taining nucleotide sequence, while the functional 
annotation component accepts multi fasta inputs 
of peptide sequence. The various structural and 
functional annotation activities also rely on the 
presence of sequence, profile, and HMM databases 
(e.g., Pfam, TIGRFAM) for comparison, as de-
scribed in the appropriate sections below. 

Procedure 
The system is compartmentalized into structural 
and functional annotation components. These can 
be operated independently or together to meet 
the scientific objectives. The process as a whole is 
diagrammed in Figure 1. 

 

 
Figure 1. Metagenomics annotation process diagram. This overview cov-
ers both the structural (yellow through blue) and functional (blue through 
green) components of the JCVI prokaryotic metagenomics processing 
pipeline. Attributes assigned include common name, gene symbol, EC 
number, GO term, JCVI role category, along with transmembrane cha-
racter and lipoprotein motifs, as applicable. 



Tanenbaum et al. 

http://standardsingenomics.org 231 

Structural annotation results in the identification 
of the most probable proteins or fragments the-
reof, present in nucleotide sequence data. It also 
produces lists of ncRNAs. Functional annotation, 
the assignment of functional attributes to putative 
protein sequences, is derived based on a value 
hierarchy established via homology to the corpus 
of available resources using BLAST [10], RPS-
BLAST [11], HMM [12], and other homology 
search algorithms. The primary attributes as-
signed by the functional annotation component 
are: gene name, gene symbol, GO terms [13], EC 
numbers [14], and JCVI functional role categories 
[15]. The EC system is a numerical classification 
scheme based on the chemical reaction(s) that a 
specific protein catalyzes [14], while GO terms 

seek to impose structured controlled vocabularies 
to describe molecular functions, biological 
processes, and cellular components [13]. JCVI role 
categories are a two-level functional classification 
system of assignments for protein cellular func-
tion [15]. 
The final output of this pipeline can be visualized 
in either tab delimited flat-file annotation sum-
mary format or using in-house visualization tools 
(unpublished). Intermediate results, including 
those from BLAST and HMM analyses are also 
persisted and can be used to dig deeper into the 
data. A complete list of third party programs uti-
lized in this system, as well as invocation parame-
ters thereof, can be found in Table 1. 

Table 1. Third party tools, cutoffs, and parameters used in this pipeline 

Process Function Tool Parameters 
Structural 
Annotation 

   
 

tRNA identification tRNAscan-SE (1.23) tRNAscan-SE -q -b -G 

 

ncRNA finder stage 1 BLAST blastall -p blastn -i -d -e 0.1 -F "T"-b 1 -v 1 
-z 3000000000 -W 9 

 

ncRNA finder stage 2 BLAST 
blastall -p blastn -i -d -e 1e-4 -F "m L"-b 
1500 -v 1500 -q -5 -r 4 -X 1500 -z 
3000000000 -W 9 -U T 

 
Protein Identification MetaGeneAnnotator -m 

Functional 
Annotation 

   

 Protein annotation BLAST 

blastall -p blastp -v 10 -b 10 -X 15 -e 1e-5 
-M BLOSUM62 –J F -K 10 -f 11 -Z 25.0 -
W 3 -U F -I F -E -1 -y 7.0 -G -1 –A 40 -Y 
0.0 -F "T" -g T -d -i -o -z 1702432768 -m 7 

 
Protein annotation hmmpfam 

 
 

Protein annotation lipoprotein_motif --is_micoplasm 0 

 
Protein annotation tmhmm 

 
 

EC assignment PRIAM rpsblast -i -d -m 8 -e 1e-10 

Structural Annotation 
The function of this component is to identify the 
best possible open reading frames from the meta-
genomics shotgun sequencing reads. This is per-
formed in full knowledge that the putative pro-
teins identified are likely to be fragments of the 
full-length protein – and as such the beginning and 
end of each read are treated as putative start and 
stop sites. This process can be run with the “clear-
range” mode either on or off; the former mode is 
useful primarily for Sanger data. In this case, only 
the region of each trace specified by the clear-

range information in the fasta header is used in 
the analysis. Clear-ranges are established using 
the base correctness metric “quality values” 
[16,17]. 
Prior to identification of protein coding genes in 
the sequence data, ncRNAs must first be found 
and masked. This is accomplished through a pair 
of processes, tRNAScan-SE [18] and a set of two 
increasingly stringent BLAST [10] searches per-
formed against a JCVI’s internal reduced-
complexity rRNA database (Table 1). The latter 
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contains a representative sampling of known 5S, 
16S, 18S, and 23S rRNA sequences. In both cases, 
the identified regions are “soft-masked”, and the 
ncRNAs written to separate output multi fasta files 
for downstream rRNA analyses. Soft-masking is a 
method used by the structural annotation pipeline 
to prevent information loss at the read level while 
allowing certain zones of the fasta record to be 
differentiated. Converting the region of the se-
quence containing ncRNAs to lower case letters 
transfers enough information downstream to ex-
clude ncRNAs before putative proteins are identi-
fied. 
The resulting soft-masked sequences are sub-
jected to a three step putative protein identifica-
tion process. Step 1 is a naïve 6-frame translation 
that identifies each possible ORF with a minimum 
size of 180 nucleotides. This cutoff was selected 
based on the expected size of typical bacterial 
genes (~900 bp, unpublished), such that a reason-
able fraction (~20%) of a putative gene is the min-
imum for annotation to proceed. Note that smaller 
cutoffs can be used as needed, such as in the case 
of viral metagenomics processing. Each run of the 
pipeline requires a user specified codon table that 
determines the length and actual amino acid se-
quence of each ORF. ORFs are defined as the long-
est possible frame from start to stop. The begin-
ning and end of each sequence record is treated as 
both stop and start, for purposes of maximizing 
the sensitivity of the system for fragments. Step 2 
requires the use of MetaGeneAnnotator [19], an ab 
initio gene predictor tool which uses empirical 
data including sequence base composition, dis-
tance, and orientation of genes of completely se-
quenced genomes to identify open reading frames. 
Step 3 consists of using the putative proteins iden-
tified in step 2 to “tag” the ORFs found in step 1 – 
those overlapping the nucleotide space of the Me-
taGene calls are defined as the most likely pro-
teins, even if they extend past the defined Meta-
Gene prediction boundary. This process produces 
set of the longest possible putative proteins from 
sequence data. The output produced is a multi fas-
ta file of putative peptides for functional annota-
tion. Overlaps between ncRNAs and putative pro-
teins are allowed if they compose less than 30 of 
the 180 nucleotide minimum (i.e., 150 unmasked 
nucleotides required for structural annotation). 
The results of the JCVI structural annotation pipe-
line are frequently supplemented by putative pro-
teins identified through incremental clustering 
processing of the same sequence data [20]. The 

putative proteins are processed by the functional 
annotation component. 
Unlike MG-RAST, our pipeline does not confine 
itself to BLASTX based peptide identification using 
a defined dataset, and as a result has a larger yield 
of putative proteins for an equivalent number of 
input reads. IMG/M, on the other hand, takes a 
two-tiered approach, with the proteins in reads 
assessed directly using RPS-BLAST against Pfam 
and COG [21] databases, and indirectly through 
BLASTX-derived “proxygenes” [22]. Both IMG/M 
and MG-RAST thus consolidate the structural and 
functional searches into a single step, while the 
JCVI system obtains additional flexibility by sepa-
rating them. 

Functional Annotation 
Functional annotation, the assignment of the most 
probable biological role for a given peptide, occurs 
in two phases: the collection of a wide array of 
information for each putative protein (“data col-
lection components”), and the application of an 
annotation value hierarchy to that information 
corpus. In such a way, each putative protein is giv-
en annotation that can be conservatively sup-
ported by the available collection of homology-
based scientific knowledge. For all the steps be-
low, the pipeline provides raw outputs that may 
be used for downstream analysis. Note that the 
data collection components operate independent-
ly and in parallel, but the value hierarchy opera-
tion must wait on completion of all the data collec-
tion components to proceed to functional assign-
ment. 
The collection of functional attributes on each 
putative protein begins with the use of BLASTP 
against the most recent version of JCVI’s PANDA 
data resource, an internal collection of non-
redundant protein and nucleotide data sets de-
rived from a variety of public databases (e.g., NCBI 
GenBank, UniProt) on an ongoing basis. This anal-
ysis includes the use of a BLOSUM62 substitution 
matrix [23] and an E value cutoff of 1e-5 (Table 1). 
For each peptide, the 10 most significant align-
ments are stored. The classes of BLAST hits de-
fined in this process are delineated and ordered in 
Table 2. This step produces two output format 
types, one is a tab delimited format with each 
alignment represented by one row, and the other 
is an XML file. These BLAST XML files can be im-
ported into the MEGAN [24], or other comparable 
tools, for phylogenetic analysis if desired. 
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Table 2. BLASTP evidence classes. 

BLAST Hit Class Annotative meaning 

High Confidence 35% identity or greater, across 85% or more of the length 

Putative less than 35% identity, but across 80% or more of the length 

Conserved Domain 35% identity or greater, but across less than 80% of the length 

Low Confidence less than 35% identity across less than 80% of the length 

These have been established through extensive manual curation and validation efforts, and are 
ordered by trustworthiness. 
 

The second data collection component is the 
search against global (ls) HMM models in the cur-
rent releases of Pfam [25] and TIGRFAM [26]. This 
search is conducted using the SIMD-accelerated 
HMMer2-like functionality provided by CLC Bios-
ciences Computational Cell [27]. In all cases, stan-
dard trusted cutoffs are used. The HMM hits are 
organized into ordered isology type classes (“iso-
types”), as listed in Table 3, each of which 
represents a different degree of confidence about 
the functional assignment. In the near term, we 
will use also incorporate searches against frag-
ment HMM models in the annotation assignment 
process. 
The third data collection component involves a 
RPS-BLAST [11] against the PRIAM database [28] 

of metabolic enzymes. This is primarily for the 
purpose of assigning EC#s in those cases without 
a TIGRFAM hit, which would otherwise take pre-
cedence. The cutoff used is 1e-10 (Table 1). 
The final data collection component involves 
searches for lipoprotein motifs and transmem-
brane helices in the putative proteins. The former 
is accomplished using a regular expression search 
in the amino acid sequence, while the latter is per-
formed using TMHMM [29], a HMM-based search 
for transmembrane motifs (Table 1). These two 
searches represent annotation states that fall well 
short of complete functional annotation (e.g., 
“putative lipoprotein”), but are more informative 
than the absence of any functional annotation. 

Table 3. HMM hit isotype classes. 
HMM Hit Class Annotative meaning 
Equivalog 

 
All proteins scoring above the trusted cutoff have the exact 
same function 

Equivalog Domain All domains scoring above the trusted cutoff have the same 
function; can be part of a multi-function protein 

Domain Defines a region of homology that may or may not have a 
known function, and need not be the full length of the poly-
peptide 

Subfamily Hits in this category represent full-length homology within a 
subgroup comtained within a gene family 

Superfamily This defines a set of proteins with full-length homology of se-
quence and domain architecture, but not necessarily the same 
function 

Hypothetical - isotype Unknown function 

Uncharacterized PFAM model cannot be assigned 

JCVI classifies HMMs into more than a dozen categories (isology types, or “isotypes”), each of 
which represents a different degree of confidence about the functional classification. 
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Annotation is assigned using the hierarchical 
scheme detailed in Table 4, which was derived 
from JCVI’s extensive experience in the manual 
curation of prokaryotic genomes. Note that in each 
case, there is a balance struck between the most 
trusted annotation and that which provides the 
most scientific value. The hierarchy applies pri-
marily to common name and gene symbol 
attributes, with EC numbers, GO terms, and JCVI 
role categories handled in a more nuanced way. 
Gene Symbols are assigned based on top blast hits 
to a curated internal prokaryotic database called 
OMNIOME [30]. EC numbers and JCVI roles are 
assigned via TIGRFAM hits in preference to Pfam 
hits. EC numbers are also assigned by PRIAM 
searches but we do not assign common name or 

symbol based on this evidence type. In the case of 
GO terms, these are assigned in the following evi-
dence order: TIGRFAM, EC number, Pfam, and 
PANDA. In the case of PANDA, the top ten blast 
hits are scored based on any hit to OMNIOME [30] 
which is then used to assign GO terms. 
Putative proteins without any evidence but identi-
fied by MetaGeneAnnotator [19] are classified as 
“hypothetical”. This set of non-conserved hypo-
thetical peptides usually constitutes at least 30% 
of all putative proteins in a dataset. 
The header format for the multi fasta output from 
the functional annotation pipeline can be seen in 
Table 5. 

Table 4. Metagenomics annotation hierarchy. 

Annotation Rank Evidence Type Evidence Class 
1 HMM TIGRfam Equivalog 
2 HMM Pfam Equivalog 
3 HMM TIGRfam Hypothetical Equivalog 
4 HMM Pfam Hypothetical Equivalog 
5 HMM TIGRfam Domain 
6 PRIAM PRIAM 
7 HMM TIGRfam Subfamily 
8 HMM TIGRfam Superfamily 
9 HMM TIGRfam EquivalogDomain 
10 HMM TIGRfam Hypothetical Equivalog Domain 
11 HMM TIGRfam Subfamily Domain 
12 HMM Pfam Subfamily 
13 HMM Pfam Superfamily 
14 HMM Pfam Equivalog Domain 
15 HMM Pfam Hypothetical Equivalog Domain 
16 HMM Pfam Subfamily Domain 
17 BLAST Panda BLASTP High Confidence 
18 HMM TIGRfam Domain 
19 HMM Pfam Domain 
20 HMM Pfam Uncharacterized 
21 BLAST Panda BLASTP Putative 
22 BLAST Panda BLASTP Conserved Domain 
23 TMHMM TMHMM 
24 LIPOPROTEIN Lipoprotein Motif 
25 DEFAULT Hypothetical 

This hand-curated and validated list, derived from years of experience with prokaryotic ge-
nome analysis, allows for the best-supported conservative functional annotation based on 
the available homology-based evidence and computational assertions. 
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Table 5. Output format of multi fasta file header, with example entries. 
Column Header Example Entry 
User Id GCA1659448.b1 
Peptide Id JCVI PEP 5160785.1 
Common Name Section Starts common name 
Common Name glutamine synthetase, catalytic domain 
Common Name Evidence PF00120 
Gene Symbol Section Starts gene symbol 
Gene Symbol glnT 
Gene Symbol Evidence RF|YP 266724.1|71084004|NC 007205 
GO Section Starts GO 
GO Terms GO:0004356 // GO:0006542 
GO Term Evidence PF00120 // PF00120 
EC Section Starts EC 
EC Id 6.3.1.2 
EC evidence PF00120 
TIGR Role Section starts TIGR role 
Tigr Role Id 73 
Tigr Role Evidence PF00120 

Output format of the JCVI prokaryotic metagenomics functional annotation 
multi fasta file header, with example entries. 

 
Implementation 
The prokaryotic metagenomics pipeline is divided 
into structural and functional annotation compo-
nents, which can be run together or separately. 
The underlying codebase itself is divided in two 
distinct sections. The first section is written in Ja-
va, and leverages JCVI's high-throughput compu-
ting platform, which provides a framework for 
scalable and robust implementations of data anal-
ysis pipelines. This software platform itself is built 
on top of JBoss - an open-source JEE server de-
signed to allow for easy failover setup and cluster-
ing. Layered design, strict adherence to standard 
interfaces such as JMS, EJB, Web Services, and high 
level of adoption of standard open source pack-
ages (e.g., Hibernate, DRMAA) ensures platform 
stability and ease of integration with other soft-
ware packages. Other built-in capabilities include 
a robust workflow subsystem, grid integration 
tier, and a growing set of bioinformatics tools im-
plemented to scale to modern data and compute 
requirements. The remaining portion of this appli-
cation lies within the PERL codebase, which in-
cludes parsers of all the raw results and the execu-
tion of the hierarchical annotation algorithm, all of 
which are invoked from within the Java portion. 

Discussion 
The progress of metagenomics as a field requires 
both that consistent, high quality functional anno-

tation be achievable in a timely manner, and that 
new computational methods to improve those 
functional assignments be incorporated. The JCVI 
prokaryotic metagenomics analysis pipeline pro-
vides an efficient system for identifying and func-
tionally classifying the proteins present in shotgun 
metagenomics sequencing data for sampling 
communities of prokaryotic organisms. This pro-
karyotic pipeline complements ongoing activity in 
viral metagenomics annotation also underway at 
JCVI. 
It is JCVI’s intention to continually upgrade this 
tool to take advantage of the not only the newest 
versions of existing resources, but to incorporate 
new resources and technologies (e.g., cloud com-
puting) as they become available. It is relevant to 
note that reproducibility of the results produced 
by this system depends substantially on the ver-
sions of the databases underlying the pipeline 
(e.g., PANDA, Pfam). As these data resources are 
iteratively updated over time with newer ver-
sions, both a net improvement in functional as-
signments and cumulative decrease in compara-
bility between older and newer data sets are ex-
pected. 
It is the intention of JCVI to make this resource 
available to the scientific community in the near 
future. 
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