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Haliangium ochraceum Fudou et al. 2002 is the type species of the genus Haliangium in the 
myxococcal family ‘Haliangiaceae’. Members of the genus Haliangium are the first halophilic 
myxobacterial taxa described. The cells of the species follow a multicellular lifestyle in highly 
organized biofilms, called swarms, they decompose bacterial and yeast cells as most  
myxobacteria do. The fruiting bodies contain particularly small coccoid myxospores. H.  
ochraceum encodes the first actin homologue identified in a bacterial genome. Here we  
describe the features of this organism, together with the complete genome sequence, and an-
notation. This is the first complete genome sequence of a member of the myxococcal  
suborder Nannocystineae, and the 9,446,314 bp long single replicon genome with its 6,898 
protein-coding and 53 RNA genes is part of the Genomic Encyclopedia of Bacteria and  
Archaea project. 

Introduction 
Strain SMP-2T (DSM 14365 = CIP 107738 = JCM 
11303) is the type strain of the species Halian-
gium ochraceum and was first described in 2002 
by Fudou et al. [1]. In 1998 strain SMP-2T was de-
scribed as swarming myxobacteria-like microor-
ganism isolated from a dry seaweed sample (La-
minariales)with optimum growth at NaCl concen-
trations of 2%. The attempt to isolate halophilic 
myxobacteria was initiated by the detection of 
myxobacterial phylotypes in marine sediments 
[2]. A second species of the genus Haliangium, H. 

tepidum, was described along with H. ochraceum 
[1]. 
Only two other genera of marine myxobacteria, 
each comprising one species, have been described 
to date: Plesiocystis pacifica and Enhygromyxa sa-
lina [3,4]. All marine myxobacteria are phyloge-
netically grouped within one of the three subord-
ers within the order Myxococcales, the Nannocys-
tineae. INSDC databases indicate (as of December 
2009) that members of Haliangium are very rare 
in the environment, with the most closely related 
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16S rRNA gene sequences from uncultured bacte-
ria being less than 94% similar to H. ochraceum SMP-2T. 

Classification and features 
At the time of species description of the two Ha-
liangium species, the most similar 16S rRNA gene 
sequence from cultivated strains originated from 
strain Pl vt1T. This strain was published with the 
name Polyangium vitellinum [5], hence the acces-
sion entry of its sequence (AJ233944) was also 
registered with this species name up to November 
2009. However, Reichenbach perceived that these 
organisms meet perfectly Kofler’s description of 
“Polyangium flavum”, but do not conform to the 
description of the genus Polyangium. Thus Rei-
chenbach revived Kofler’s “Polyangium flavum” in 
a new genus, Kofleria, and designated strain Pl 
vt1T the type strain of the species Kofleria flava 
[6]. Subsequently, the species name was changed 
in the Genbank entry for AJ233944. The 16S rRNA 
gene sequences of the two Haliangium species 
were less than 94% similar to this nearest neigh-
bor [1], and thus far no sequences of cultivated or 
uncultivated bacteria with higher similarities to 
SMP-2T were deposited in GenBank. 
In 2005, the family Kofleriaceae was created by 
Reichenbach, containing the single species K. flava 
[6], and the author mentioned in a note added 
during the edition of Bergey’s Manual that he re-
garded the two Haliangium species as members of 
the family Kofleriaceae. This family name has 
standing in nomenclature [7]. Albeit, Haliangium 
ochraceum is listed in the Taxonomic Outline of 
the Prokaryotes [8] as member of the family “Ha-
liangiaceae”, that has no standing in nomencla-
ture. From a phylogenetic point of view, the gene-
ra Kofleria (terrestrial) and Haliangium (marine) 
should be members of a single family. 
Myxobacteria are distinct because of two excep-
tional features. The first is their high potential to 
produce secondary metabolites, most of them af-
fecting prokaryotic or eukaryotic cells and hence 
awaiting exploitation for pharmaceutical applica-
tions or in plant protection. They encode genes for 
key enzymes in the biosynthesis of polyketide and 
peptide metabolites, polyketide synthases and 
nonribosomal peptide synthetases, respectively 
[9]. Their second distinctive characteristic is their 
morphogenesis, i.e. the formation of fruiting bo-
dies and development of myxospores, that is 
based on cell-to-cell signaling among the single 
cells of the population in a swarm. The genetic 
background of the so called ‘social motility’ and 

morphogenesis is understood best for Myxococcus 
xanthus [10]. It is no surprise that these pheno-
mena are regulated by sophisticated networks 
including two-component regulatory systems 
[11]. 
Figure 1 shows the phylogenetic neighborhood of 
H. ochraceum SMP-2T in a 16S rRNA based tree. 
The sequences of the two 16S rRNA gene copies in 
the genome of do not differ from each other, and 
do not differ from the previously published 16S 
rRNA sequence of DSM 14365 (AB016470). 
Vegetative cells of H. ochraceum stain Gram-
negative and form cylindrical rods with blunt ends 
(Table 1). They are embedded in an extracellular 
matrix and measure 0.5-0.6 by 3-8 µm (Figure 2). 
This cell form is characteristic for members of the 
suborder Nannocystineae [6]. The colonies exhibit 
spreading on solid surfaces such as agar as film-
like layers and thus are called ‘swarms’. The ex-
tending motion is propelled by gliding. On aging 
culture plates, the cells do no more spread to ex-
plore new substrates (so called adventurous or A 
motility) but also gather on specific points of the 
swarms to form fruiting bodies (social or S motili-
ty) [10]. The fruiting bodies of strain SMP-2T are 
light yellow to yellowish-brown, irregular, sessile 
knobs with a diameter of 50-200 µm and contain 
one or more oval-shaped sporangioles, each 20-60 
µm in size [1,2]. The spherical to ovoid myxos-
pores within the sporangioles measure 0.5-0.7 µm. 
Thus they resemble the myxospores of Nannocys-
tis species in being very tiny [1]. The myxospores 
tolerate heat treatment at 55-60°C for 5 minutes 
and storage in a desiccated stage for at least 3 
months [23]. 
The strain requires NaCl for growth with an opti-
mum concentration of 2% and good growth in the 
range of 0.5-4% NaCl in agar or in liquid medium 
[1,2,23]. Fruiting body formation was observed at 
salt concentrations corresponding to 40-100% sea 
water concentration but not at lower salt concen-
trations [23]. Media supporting growth are CY 
medium, diluted 1:5, (DSMZ medium 67) or VY/2 
medium (DSMZ medium 9) [26], each supple-
mented with seawater salts. No growth was ob-
tained in tryptic soy broth with seawater salts [1]. 
Corresponding to the multicellular lifestyle, new 
agar or liquid cultures of strain SMP-2T can only 
be successfully started with very high inoccula. 
The minimum cell load on a plate in order to in-
duce a swarm is 105 [23]. The temperature range 
for growth is 20-40°C with an optimum at 30-34°C [1].  
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Figure 1. Phylogenetic tree highlighting the position of H. ochraceum SMP-2T relative to the other type strains with-
in the genus and the type strains of the other genera within the order Myxococcales. The tree was inferred from 
1,463 aligned characters [12,13] of the 16S rRNA gene sequence under the maximum likelihood criterion [14] and 
rooted in accordance with the current taxonomy. The branches are scaled in terms of the expected number of  
substitutions per site. Numbers above branches are support values from 1,000 bootstrap replicates if larger than 
60%. Lineages with type strain genome sequencing projects registered in GOLD [15] are shown in blue, published 
genomes in bold. 

 
 
Cells of strain SMP-2T are strictly aerobic with 
weak oxidase and catalase reactions. They do not 
grow in mineral media with carbohydrates or or-
ganic acids but are specialized decomposers of 
macromolecules such as starch, DNA, casein, chitin 
or gelatin. Cellulose, however is not cleaved. The 
cells are equipped to decompose cells of other 
bacteria or yeasts [1]. Correspondingly, enzymes 
such as lipase (C14), trypsin, chymotrypsin, valine 
or leucine arylamidases are active [1]. Whether or 
not H. ochraceum actively hunt for prey bacteria 
as shown for M. xanthus [27] has not been studied 
yet. 
Chemotaxonomy 
The fatty acid profile of strain SMP-2T reveals sa-
turated straight chain C16:0 (38.3%) and branched 
chain iso-C16:0 (15.3%) acids as the major fatty ac-
ids. No hydroxylated fatty acids were detected, a 
feature shared with members of the genera Nan-
nocystis, Sorangium [1], Plesiocystis [4] and Enhy-
gromyxa [3]. While the two Haliangium species 

also contain anteiso-branched fatty acids as dis-
tinctive compounds [1], the specific feature of the 
two other marine genera Plesiocystis and Enhy-
gromyxa is the presence of polyunsaturated C20:4 
acids [3,4]. A novel pathway for the biosynthesis 
of iso-even fatty acids (by α-oxidation of iso-odd 
fatty acids) was detected for the myxobacterium 
Stigmatella aurantiaca [28]. In members of the 
genus Nannocystis and Polyangium, true steroids 
were detected, a very unusual trait among proka-
ryotes [6,29]. It would be interesting to study 
whether these pathways are also found in H. och-
raceum. 
MK-8 is the predominant menaquinone in SMP-2T 
as it is in all terrestrial myxobacterial taxa studied 
[1,29]. It is noteworthy that the members of the 
other marine genera Plesiocystis and Enhygromyxa 
contain MK-8(H2) and MK-7, respectively [3,4]. 
The compositions of polyamines and the polar li-
pids of Haliangium strains have not been  
analyzed. 
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Table 1. Classification and general features of H. ochraceum SMP-2T according to the MIGS recommendations [16] 

MIGS ID Property Term Evidence code 

 Current classification 
 

Domain Bacteria TAS [17] 
Phylum Proteobacteria TAS [18] 
Class Deltaproteobacteria TAS [19] 

Order Myxococcales TAS [20,21] 

Suborder Nannocystineae TAS [6,22] 
Family ‘Haliangiaceae’/Kofleriaceae TAS [6,8] 
Genus Haliangium TAS [1] 
Species Haliangium ocharaceum TAS [1] 
Type strain SMP-2 TAS [1] 

 Gram stain negative TAS [1] 
 Cell shape rods TAS [1] 
 Motility gliding TAS [1] 
 Sporulation myxospores TAS [1] 
 Temperature range mesophile, 20-40°C TAS [1] 
 Optimum temperature 30-34°C TAS [1] 

 Salinity halophile, optimum 2% NaCl TAS [1] 

  tolerates up to 6% NaCl TAS [2,23] 

MIGS-22 Oxygen requirement strictly aerobic TAS [1] 

 Carbon source macromolecules such as proteins TAS [1] 

 Energy source chemoorganotrophic TAS [1] 
MIGS-6 Habitat marine TAS [1,23] 
MIGS-15 Biotic relationship isolated from seaweed TAS [2] 
MIGS-14 Pathogenicity non pathogenic NAS 

 Biosafety level 1 TAS [24] 

 Isolation dry sample of seaweed (Laminariales) TAS [1] 
MIGS-4 Geographic location Miura Peninsula, Japan TAS [2] 
MIGS-5 Sample collection time 1997 TAS [2] 
MIGS-4.1 
MIGS-4.2 

Latitude, 
Longitude 35.259, 139.629 NAS 

MIGS-4.3 Depth not reported  
MIGS-4.4 Altitude sea-level  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author  
Statement (i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not direct-
ly observed for the living, isolated sample, but based on a generally accepted property for the species, or 
anecdotal evidence). These evidence codes are from of the Gene Ontology project [25]. If the evidence 
code is IDA, then the property was directly observed for a live isolate by one of the authors or an expert 
mentioned in the acknowledgements.  

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position, and is part of the 
Genomic Encyclopedia of Bacteria and Archaea 
project [30]. The genome project is deposited in 

the Genome OnLine Database [15] and the com-
plete genome sequence is deposited in GenBank. 
Sequencing, finishing and annotation were per-
formed by the DOE Joint Genome Institute (JGI). A 
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summary of the project information is shown in 
Table 2. 

Growth conditions and DNA isolation 
H. ochraceum SMP-2T, DSM 14365, was grown in 
CY medium with seawater salts (in grams per li-
ter: casitone 3.0, yeast extract 1.0, NaCl 21.1, KCl 

0.6, CaCl2 × 2 H2O 1.2, MgCl2 × 6 H2O 3.6, NaHCO3 
0.09, MgSO4 × 7H2O 2.6, agar 15 g) [26] at 28°C. 
DNA was isolated from 0.5-1 g of cell paste using 
Qiagen Genomic 500 DNA Kit (Qiagen, Hilden, 
Germany), with a modified protocol for cell lysis 
(st/LALMP), as described in Wu et al. [30]. 

Figure 2. Scanning electron micrograph of H. ochraceum SMP-2T 

 
Genome sequencing and assembly 
The genome was sequenced using a combination 
of Sanger and 454 sequencing platforms. All gen-
eral aspects of library construction and sequenc-
ing performed at the JGI can be found at the JGI 
website (http://www.jgi.doe.gov/). 454 Pyrose-
quencing reads were assembled using the Newb-
ler assembler version 1.1.02.15 (Roche). Large 
Newbler contigs were broken into 10,273 over-
lapping fragments of 1,000 bp and entered into 
the final assembly as pseudo-reads. The sequences 
were assigned quality scores based on Newbler 
consensus q-scores with modifications to account 
for overlap redundancy and to adjust inflated q-
scores. A hybrid 454/Sanger assembly was made 
using the parallel phrap assembler (High Perfor-
mance Software, LLC). Possible mis-assemblies 
were corrected with Dupfinisher or transposon 
bombing of bridging clones [31]. Gaps between 
contigs were closed by editing in Consed, custom 
primer walk or PCR amplification. A total of 2,013 
Sanger finishing reads were produced to close 
gaps, to resolve repetitive regions, and to raise the 
quality of the finished sequence. The error rate of 
the completed genome sequence is less than 1 in 
100,000. Together all sequence types provided 

24.3× coverage of the genome. The final assembly 
contains 90,757 Sanger and 689,516 pyrose-
quencing reads. 
Genome annotation 
Genes were identified using Prodigal [32] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline 
(http://geneprimp.jgi-psf.org/) [33]. The pre-
dicted CDSs were translated and used to search 
the National Center for Biotechnology Information 
(NCBI) nonredundant database, UniProt, TIGR-
Fam, Pfam, PRIAM, KEGG, COG, and InterPro data-
bases. Additional gene prediction analysis and 
functional annotation was performed within the 
Integrated Microbial Genomes - Expert Review 
(http://img.jgi.doe.gov/er) platform [34]. 

Genome properties 
The genome is 9,446,314 bp long and comprises 
one main circular chromosome with a 69.5% GC 
content (Table 3 and Figure 3). Of the 6,951 genes 
predicted, 6,898 were protein coding genes, and 
53 RNAs. Fifty-three pseudogenes were also iden-
tified. The majority of the protein-coding genes 
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(62.1%) were assigned with a putative function 
while the remaining ones were annotated as  
hypothetical proteins. The percentage of genes 
which were not assigned to COGs is relatively 
high, 42%, a proportion similar to that in the ge-

nome of Sorangium cellulosum So ce56 [11]. This 
fact suggests that the genome harbors many yet 
unknown genes. The distribution of genes into 
COGs functional categories is presented in Table 4. 

 
 
Table 2. Genome sequencing project information 

MIGS ID Property Term 
MIGS-31 Finishing quality Finished 

MIGS-28 Libraries used 
Two Sanger genomic libraries – 6 kb 
pMCL200 and fosmid pcc1Fos and one 
454 pyrosequencing standard library 

MIGS-29 Sequencing platforms ABI3730, 454 GS FLX 
MIGS-
31.2 

Sequencing coverage 7.8× Sanger; 16.5× pyrosequence 

MIGS-30 Assemblers Newbler version 1.1.02.15, phrap 
MIGS-32 Gene calling method Prodigal, GenePRIMP 
 INSDC ID CP001804 
 Genbank Date of Release October 28, 2009 
 GOLD ID Gc01135 
 NCBI project ID 41425 
 Database: IMG-GEBA 2502082105 
MIGS-13 Source material identifier DSM 14365 
 Project relevance Tree of Life, GEBA 

 
 
Starting from one of the conspicuous features of 
the myxobacteria, the diversity of secondary me-
tabolism, the number of known genes putatively 
assigned to the COG category “Secondary metabo-
lites biosynthesis, transport and catabolism” is not 
exceptionally high: 174 genes in comparison to, 
for example, 136 genes in Pseudomonas putida F1. 
The number of COG genes involved in “Replica-
tion, recombination and repair”, however, are re-
markably increased: in H. ochraceum: 439 genes 
were assigned to this category, in S. cellulosum 
there are 541, whereas P. putida only contains 157 
genes assigned to this category. 

Insights from genome sequence 
The genomes of two other myxobacteria, M. xan-
thus DK1622 and S. cellulosum strain So ce56, 
were analyzed in depth [11,35-37] and may serve 
as a roadmap to explore the genome of strain 
SMP-2T. 
Sixteen genes of strain SMP-2T were putatively 
assigned to the COG category ‘Cytoskeleton’. Re-
cognizing that almost all other bacteria do not 

harbor any genes assigned to this category it is 
worth mentioning that all myxobacterial genomes 
studied so far include several copies in this cate-
gory. Fifteen of the cytoskeleton genes of SMP-2T 
belong to COG 5184 ’Alpha-tubulin suppressor 
and related RCC1 domain-containing proteins‘. 
Strain SMP-2T and P. pacifica, another rare marine 
myxobacterium, together with Salinispora arenico-
la are the prokaryotes with the highest degree of 
similarity of these genes, 15, 12, 14 and 15, re-
spectively. Whereas RCC1 was known as a euka-
ryotic cell cycle regulator, RCC1-like repeats were 
recently also detected in several prokaryotic ge-
nomes [38]. Future studies will have to elucidate 
whether the SMP-2T sequences, automatically as-
signed to a RCC1 domain, are related to these re-
peats in particular. As the genes most similar to 
the H. ochraceum RCC1-like proteins, as deter-
mined by protein BLAST with the NCBI database, 
derive exclusively from other myxobacteria such 
as P. pacifica or Stigmatella aurantiaca, it seems 
plausible that they build a myxobacterial branch 
within the RCC1 superfamily. 

 



Ivanova et al. 

http://standardsingenomics.org 102 

 
Table 3. Genome Statistics 

Attribute Value % of Total 
Genome size (bp) 9,446,314 100.00% 
DNA coding region (bp) 8,424,350 89.18% 
DNA G+C content (bp) 6,563,619 69.48% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 6,951 100.00% 
RNA genes 53 0.76% 
rRNA operons 2  
Protein-coding genes 6,898 99.24% 
Pseudo genes 53 0.76% 
Genes with function prediction 4,318 62.12% 
Genes in paralog clusters 1,329 19.12% 
Genes assigned to COGs 4,036 58.06% 
Genes assigned Pfam domains 4,167 59.95% 
Genes with signal peptides 1,786 25.69% 
Genes with transmembrane helices 1,371 19.72% 
CRISPR repeats 3  

 

 
Figure 3. Graphical circular map of the genome. From outside to the center: Genes on 
forward strand (color by COG categories), Genes on reverse strand (color by COG cate-
gories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 4. Number of genes associated with the general COG functional categories 

Code Value %age Description 

J 182 2.6 Translation, ribosomal structure and biogenesis 

A 2 0.0 RNA processing and modification 

K 488 7.1 Transcription 

L 439 6.4 Replication, recombination and repair 

B 3 0.0 Chromatin structure and dynamics 

D 54 0.8 Cell cycle control, mitosis and meiosis 

Y 0 0.0 Nuclear structure 

V 83 1.2 Defense mechanisms 

T 549 8.0 Signal transduction mechanisms 

M 250 3.6 Cell wall/membrane biogenesis 

N 55 0.8 Cell motility 

Z 16 0.2 Cytoskeleton 

W 0 0.0 Extracellular structures 

U 89 1.3 Intracellular trafficking and secretion 

O 194 2.8 Posttranslational modification, protein turnover, chaperones 

C 265 3.8 Energy production and conversion 

G 186 2.7 Carbohydrate transport and metabolism 

E 308 4.5 Amino acid transport and metabolism 

F 78 1.1 Nucleotide transport and metabolism 

H 183 2.7 Coenzyme transport and metabolism 

I 204 3.0 Lipid transport and metabolism 

P 163 2.4 Inorganic ion transport and metabolism 

Q 174 2.5 Secondary metabolites biosynthesis, transport and catabolism 

R 754 10.9 General function prediction only 

S 332 4.8 Function unknown 

- 2915 42.3 Not in COGs 
 
The most striking finding in the H. ochraceum ge-
nome was a sequence coding for a protein of the 
actin family (COG 5277) within the Cytoskeleton 
category [30]. Only eight years ago, it became ob-
vious that bacterial cells contain a cytoskeleton at 
least as active as in eukaryotic cells. The bacterial 
functional and structural homologues to the euka-
ryotic actin compound are the proteins MreB and 
ParM [39]. However, the prokaryotic and eukaryo-
tic genes coding for these proteins, or their amino 
acid sequences, are not related on the sequence 
level. In contrast, the sequence detected in H. och-
raceum shows a striking sequence similarity to 
actin and is the very first report of an actin homo-
log in a bacterial genome. The protein was called 
BARP, bacterial actin-related protein. The genomic 

context of barP, its sequence, the putative struc-
ture of the protein and evidence that the gene is 
expressed were recently described by Wu et al. 
[30]. Interestingly, several hits for proteins of the 
actin family are given for Archaea by IMG. 
Myxobacteria became known for their potential to 
synthesize a vast array of secondary metabolites. 
Polyketide synthases (PKS) and nonribosomal 
peptide synthetases play the key role in the build-
ing pathways [37]. PKS multidomain complexes 
are listed in COG 3221 in the category ‘Secondary 
metabolites’. The sum of automatic assignments to 
this category is not extraordinarily increased for 
H. ochraceum in comparison to other bacteria 
(174 hits as compared to, e.g., 136 in P. putida 
strain F1), and the search for the gene product 
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‘polyketide synthase’ does not find any gene for H. 
ochraceum. However, the genome of H. ochraceum, 
like the other myxobacteria studied, contains a 
high number of stretches assigned to COG 3321. 
The number of hits in COG is less than 10 in bacte-
ria except for the myxobacteria, Burkholderia mal-
lei, B. pseudomallei, Mycobacterium spp. and mem-
bers of the Streptomyces. The annotations in COG 
3321 for H. ochraceum identify the homologues as 
known domains of PKS (for example acyltransfe-
rases or ketoreductases) or of a distinct PKS syn-
thesizing the aglycone precursor of erythromycin 
B. A search for PKS in different myxobacteria us-
ing PCR unfortunately did not include H. ochra-
ceum but it included a strain representing the 
second species in the genus, H. tepidum [40]. The 
authors found the highest percentage of yet unde-

scribed PKS sequences (50% of all newly detected 
PKS sequences) in the marine myxobacteria (as 
compared to terrestrial myxobacteria). In H. tepi-
dum, all 10 PKS sequences represented novel PKS 
genes (threshold 70% identity to known se-
quences). These findings suggest that an in-depth 
search for novel genes coding for isoprenoid me-
tabolites in H. ochraceum has a very good prospect 
of success. 
Other promising fields of gene mining in H. ochra-
ceum, as a representative of the marine myxobac-
teria, most likely are the genes of energy metabol-
ism and the genes coding for the coordinated 
movement of cells during fruiting body and myx-
ospore formation. This morphogenesis is con-
ducted by cell-to-cell cross-talk, signal transduc-
tion and induction of ‘social motility’ [10,41]. 
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