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Arcobacter nitrofigilis (McClung et al. 1983) Vandamme et al. 1991 is the type species of the 
genus Arcobacter in the family Campylobacteraceae within the  Epsilonproteobacteria. The 
species was first described in 1983 as Campylobacter nitrofigilis [1] after its detection as a 
free-living, nitrogen-fixing Campylobacter species associated with Spartina alterniflora Loisel 
roots [2]. It is of phylogenetic interest because of its lifestyle as a symbiotic organism in a ma-
rine environment in contrast to many other Arcobacter species which are associated with 
warm-blooded animals and tend to be pathogenic. Here we describe the features of this or-
ganism, together with the complete genome sequence, and annotation. This is the first com-
plete genome sequence of a type stain of the genus Arcobacter. The 3,192,235 bp genome 
with its 3,154 protein-coding and 70 RNA genes is part of the Genomic Encyclopedia of Bac-
teria and Archaea project. 

Introduction 
Strain CIT (= DSM 7299 = ATCC 33309 = CCUG 
15893) is the type strain of the species Arcobacter 
nitrofigilis, which is the type species of the genus 
Arcobacter [1]. Strain CIT was isolated from roots 
of Spartina alterniflora Loisel (cordgrass) growing 
in salty marshes at the East coast of Canada. It was 
the first description of an organism in this kind of 
habitat that belonged to the genus Campylobacter, 
as described based on phenotypic and biochemical 
traits [2]. The species epithet nitrofigilis means 
'nitrogen-fixing' and is based on the outstanding 

characteristic of this species [3]. The new genus 
Arcobacter, meaning 'bow-shaped rod', was intro-
duced in 1991 and its separation from the genus 
Campylobacter was based on DNA-DNA and DNA-
rRNA hybridization [1]. Up to now, the genus Ar-
cobacter comprises nine species, some of which 
are associated with warm-blooded animals whe-
reas others are found in marine environments. 
Within the Campylobacteraceae several whole-
genome sequences have already been deciphered: 
A. butzleri strain RM4018 [4] (non type strain) is 
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the only member of the genus Arcobacter, as well 
as genomes from seven species of the genus Cam-
pylobacter, and Sulfurospirillum deleyianum [5]. 
Only few additional strains belonging to the spe-
cies A. nitrofigilis are known in the literature, with 
F2176 and F2173 [6] being the closest related 
ones (99% sequence identity). The type strains of 
the other species of the genus Arcobacter share 
93.8-94.6% 16S rRNA sequence identity with 
strain CIT, whereas the type strains from other 
genera in the family Campylobacteraceae share 
less than 89% sequence identity with strain CIT

[7]. There are plenty of phylotypes (uncultured 
bacteria) known from marine environments such 
as the ridges flanking crustal fluids in oceanic 
crust (AY704399, clone FD118-51B-02, 98.6%), 
sea water from Ishigaki port in Japan 
(AB262370/-71, 96.4%), a mangrove of the Dan-
shui river estuary of northern Taiwan (DQ234254, 
95.8%) [8], costal water in the Bohai Bay, China, 
(FJ155005, 95.8%), in Black Sea shelf sediments in 

Romania (AJ271655, 95.8%), or from activated 
sludge in New Zealand (EU104146, 95.8%). Envi-
ronmental screens and marine metagenome libra-
ries do not contain more than a handful of se-
quences with >93% 16S rRNA gene sequence 
identity indicating a sparse representation of 
closely related strains in the habitats analyzed 
(status March 2010). Here we present a summary 
classification and a set of features for A. nitrofigilis 
strain CIT, together with the description of the 
complete genome sequencing and annotation. 

Classification and features 
Figure 1 shows the phylogenetic neighborhood of 
A. nitrofigilis strain CIT in a 16S rRNA based tree. 
The four 16S rRNA gene sequences in the genome 
differ from each other by up to two nucleotides, 
and differ by up to three nucleotides from the pre-
viously published 16S rRNA sequence (L14627) 
generated from CCUG 15893, which contains nine 
ambiguous base calls. 

 
 

Figure 1. Phylogenetic tree highlighting the position of A. nitrofigilis strain CIT relative to the type strains of the 
other genera within the Epsilonproteobacteria. The tree was inferred from 1,379 aligned characters [9,10] of 
the 16S rRNA gene sequence under the maximum likelihood criterion [11,12] and rooted (as far as possible) 
in accordance with the current taxonomy [13]. The branches are scaled in terms of the expected number of 
substitutions per site. Numbers above branches are support values from 200 bootstrap replicates [14] if larger 
than 60%. Lineages with type strain genome sequencing projects registered in GOLD [15] are shown in blue, 
published genomes [16] in bold, e.g. the recently published GEBA genome from S. deleyianum [5]. 
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A. nitrofigilis cells are Gram-negative, bow-shaped 
or curved rods of 1–3 µm length and 0.2–0.9 µm 
width (Figure 2 and Table 1). Motility is based on 
a single, polar flagellum and results in rapid 
corkscrew motion. Older cultures also show coc-
coid cells [2]. The habitat of all known A. nitrofigi-
lis isolates is either the roots or the sediment 
around the roots of S. alterniflora Loisel growing 
in salt marshes [3]. Although no pathogenic asso-
ciation has been described so far, A. nitrofigilis 
was among five Arcobacter species that were iso-
lated from food samples such as meat and shell-
fish varieties [27]. The optimum growth tempera-
ture of A. nitrofigilis is 30°C, the temperature 
range is from 10–37°C [28]. Neither spores nor 
granules are present but a brown pigment is 
formed from tryptophan [2]. All strains of the spe-
cies show positive reactions for nitrogenase, cata-
lase and oxidase. Growth occurs under microae-

rophilic conditions with oxygen as terminal elec-
tron acceptor, under anaerobic conditions fuma-
rate or aspartate are necessary, the presence of 
nitrate is detrimental [2]. Hydrogen is not neces-
sary for growth [1]. Nitrate is reduced to nitrite 
and sulfide is produced from cysteine [3]. Strain 
CIT tested positive for urease, other strains of the 
species do not [3]. The metabolism of A. nitrofigilis 
is chemoorganotrophic; organic acids and amino 
acids are used as carbon sources but carbohy-
drates are neither oxidized nor fermented [2]. All 
strains of the species are halotolerant. They re-
quire a minimum of 0.5% NaCl for growth and can 
tolerate up to 7% NaCl [28]. A. nitrofigilis is sus-
ceptible to cephalothin and nalidixic acid but isre-
sistant to vancomycin [3]. The G+C content of the 
DNA was determined by thermal denaturation to 
be 28.0% [3] which is slightly below the 28.4% 
found in the genome. 

 

 
Figure 2. Scanning electron micrograph of A. nitrofigilis strain CIT 

Genome sequencing and annotation 
Genome project history 
This organism was selected for sequencing on the 
basis of its phylogenetic position [29], and is part 
of the Genomic Encyclopedia of Bacteria and Arc-
haea project [30]. The genome project is depo-
sited in the Genomes OnLine Database [15] and 

the complete genome sequence in GenBank. Se-
quencing, finishing and annotation were per-
formed by the DOE Joint Genome Institute (JGI). A 
summary of the project information is shown in 
Table 2. 
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Table 1. Classification and general features of A. nitrofigilis strain CIT according to the MIGS recommendations [17] 
MIGS ID Property Term Evidence code 

 

Current classification 
 

Domain       Bacteria TAS [18] 
Phylum      ‘Proteobacteria’ TAS [19] 
Class           Epsilonproteobacteria TAS [20,21] 
Order           Campylobacterales TAS [20,22] 
Family         Campylobacteraceae TAS [23] 
Genus          Arcobacter TAS [1] 
Species        Arcobacter nitrofigilis TAS [1] 
Type strain CI TAS [3] 

 Gram stain negative TAS [2] 
 Cell shape bow-shaped rods TAS [2] 
 Motility motile TAS [2] 
 Sporulation non-sporulating TAS [2] 
 Temperature range mesophile, 10-37°C TAS [2] 
 Optimum temperature 30°C TAS [24] 
 Salinity halotolerant up to 7% NaCl TAS [2] 
MIGS-22 Oxygen requirement microaerophilic TAS [2] 
 Carbon source organic and amino acids TAS [1] 
 Energy source chemoorganotroph TAS [3] 
MIGS-6 Habitat marine TAS [2] 
MIGS-15 Biotic relationship symbiotic TAS [2] 
MIGS-14 Pathogenicity none NAS 
 Biosafety level 1 TAS [25] 
 Isolation roots of the marshplant Spartina alterniflora TAS [2] 

MIGS-4 Geographic location 
Conrads Beach (Dartmouth), 
Nova Scotia (Canada) 

TAS [2] 

MIGS-5 Sample collection time about or before 1980 TAS [2] 
MIGS-4.1 
MIGS-4.2 

Latitude 
Longitude 

44.65 
-63.60 

NAS 

MIGS-4.3 Depth unknown  
MIGS-4.4 Altitude sea level  

Evidence codes - IDA: Inferred from Direct Assay (first time in publication); TAS: Traceable Author Statement 
(i.e., a direct report exists in the literature); NAS: Non-traceable Author Statement (i.e., not directly observed for 
the living, isolated sample, but based on a generally accepted property for the species, or anecdotal evidence). 
These evidence codes are from of the Gene Ontology project [26]. If the evidence code is IDA, then the proper-
ty was directly observed by one of the authors or an expert mentioned in the acknowledgements. 

Chemotaxonomy 
The major respiratory quinones are menaquinone 
6 and a second atypical menaquinone 6 that has 
not yet been clearly identified [1]. The major fatty 
acids in whole cells of A. nitrofigilis are hexadece-
noic (C16:0), cis-9-hexadecenoic (cis-C16:1ϖ7c) and 
cis-9-octadecenoic acid (cis-C18:1ϖ7c) [24] 

Growth conditions and DNA isolation 
A. nitrofigilis strain CIT, DSM 7299, was grown on 
DSMZ medium 429 (Columbia agar including 5% 
horse blood) [31] at 28°C. DNA was isolated from 

1-1.5 g of cell paste using Qiagen Genomic 500 
DNA Kit (Qiagen, Hilden, Germany) with lysis 
modification st/LALMP according to Wu et al. 
[30]. 

Genome sequencing and assembly 
The genome was sequenced using a combination of 
Illumina and 454 technologies. An Illumina GAii 
shotgun library with reads of 50 Mb, a 454 Titanium 
draft library with average read length of 243 bases, 
and a paired end 454 library with average insert size 
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of 24 kb were generated for this genome. All general 
aspects of library construction and sequencing can 
be found at http://www.jgi.doe.gov/. Draft assembly 
was based on 138 Mb 454 standard and 454 paired 
end data (498,215 reads). Newbler (Roch, version 
2.0.0-PostRelease-10/28/2008) parameters are -
consed -a 50 -l 350 -g -m -ml 20. The initial Newbler 
assembly contained 42 contigs in 3 scaffolds. It was 
converted into a phrap assembly by making fake 
reads from the consensus and collecting the read 
pairs in the 454 paired end library. Illumina se-
quencing data was assembled with Velvet [32], and 
the consensus sequences were shredded into 1.5 kb 
overlapped fake reads and assembled together with 
the 454 data. The Phred/Phrap/Consed software 
package was used for sequence assembly and quali-

ty assessment in the following finishing process. Af-
ter the shotgun stage, reads were assembled with 
parallel phrap (High Performance Software, LLC). 
Possible mis-assemblies were corrected with gapRe-
solution, Dupfinisher, or sequencing cloned bridging 
PCR fragments with subcloning or transposon 
bombing [33]. Gaps between contigs were closed by 
editing in Consed, by PCR and by Bubble PCR primer 
walks (J-F.Cheng, unpublished). A total of 480 addi-
tional Sanger reactions were necessary to close gaps 
and to raise the quality of the finished sequence. Il-
lumina reads were also used to improve the final 
consensus quality using an in-house developed tool 
(the Polisher). The error rate of the completed ge-
nome sequence is less than 1 in 100,000. 

Table 2. Genome sequencing project information 
MIGS ID Property Term 

MIGS-31 Finishing quality Finished 

MIGS-28 
Libraries used 

Three genomic libraries: 454 pyro-sequence 
standard library, 454 pyro-sequence 24 kb 
PE library, and Illumina stdandard library 

MIGS-29 Sequencing platforms 454 GS FLX, Illumina GAii 

MIGS-31.2 Sequencing coverage 43.5× pyrosequence, 15.7× Illumina 

MIGS-30 
Assemblers Newbler version 2.0.0-PostRelease-

10/28/2008, phrap 

MIGS-32 Gene calling method Prodigal 1.4, GenePRIMP 

 INSDC ID CP001999 

 Genbank Date of Release May 18, 2010 

 GOLD ID Gc01280 

 NCBI project ID 32593 
 Database: IMG-GEBA 2502545034 

MIGS-13 Source material identifier DSM 7299 

 Project relevance Tree of Life, GEBA 

Genome annotation 
Genes were identified using Prodigal [34] as part 
of the Oak Ridge National Laboratory genome an-
notation pipeline, followed by a round of manual 
curation using the JGI GenePRIMP pipeline [35]. 
The predicted CDSs were translated and used to 
search the National Center for Biotechnology In-
formation (NCBI) nonredundant database, Uni-
Prot, TIGR-Fam, Pfam, PRIAM, KEGG, COG, and In-
terPro databases. Additional gene prediction anal-
ysis and functional annotation was performed 
within the Integrated Microbial Genomes - Expert 
Review (IMG-ER) platform [36]. 

Genome properties 
The genome is 3,192,235 bp long and comprises 
one main circular chromosome with an overall 
G+C content of 28.4% (Table 3 and Figure 3). Of 
the 3,224 genes predicted, 3,154 were protein-
coding genes, and 70 RNAs; 28 pseudogenes 
were also identified. The majority of the protein-
coding genes (72.1%) were assigned a putative 
function while those remaining were annotated 
as hypothetical proteins. The distribution of 
genes into COGs functional categories is pre-
sented in Table 4. 

http://www.jgi.doe.gov/�
http://www.phrap.com/�
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http://www.jgi.doe.gov/�
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Table 3. Genome Statistics 
Attribute Value % of Total 
Genome size (bp) 3,192,235 100.00% 
DNA coding region (bp) 3,009,967 94.29% 
DNA G+C content (bp) 905,345 28.36% 
Number of replicons 1  
Extrachromosomal elements 0  
Total genes 3,224 100.00% 
RNA genes 70 2.17% 
rRNA operons 4  
Protein-coding genes 3,154 97.83% 
Pseudo genes 70 2.17% 
Genes with function prediction 2,324 72.08% 
Genes in paralog clusters 454 14.08% 
Genes assigned to COGs 2,363 73.29% 
Genes assigned Pfam domains 2,480 76.92% 
Genes with signal peptides 597 18.52% 
Genes with transmembrane helices 838 25.99% 
CRISPR repeats 1  

Figure 3. Graphical circular map of the chromosome. From outside to the center: Genes on forward 
strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes 
(tRNAs green, rRNAs red, other RNAs black), GC content, GC skew. 
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Table 4. Number of genes associated with the general COG functional categories 
Code value %age Description 

J 143 5.4 Translation, ribosomal structure and biogenesis 
A 0 0.0 RNA processing and modification 
K 157 5.9 Transcription 
L 102 3.9 Replication, recombination and repair 
B 0 0.0 Chromatin structure and dynamics 
D 16 0.6 Cell cycle control, mitosis and meiosis 
Y 0 0.0 Nuclear structure 
V 37 1.4 Defense mechanisms 
T 267 10.1 Signal transduction mechanisms 
M 168 6.3 Cell wall/membrane/envelope biogenesis 
N 78 3.0 Cell motility 
Z 0 0.0 Cytoskeleton 
W 0 0.0 Extracellular structures 
U 69 2.6 Intracellular trafficking and secretion 
O 103 3.9 Posttranslational modification, protein turnover, chaperones 
C 212 8.0 Energy production and conversion 
G 114 4.3 Carbohydrate transport and metabolism 
E 252 9.5 Amino acid transport and metabolism 
F 61 2.3 Nucleotide transport and metabolism 
H 128 4.8 Coenzyme transport and metabolism 
I 57 2.2 Lipid transport and metabolism 
P 159 6.0 Inorganic ion transport and metabolism 
Q 38 1.4 Secondary metabolites biosynthesis, transport and catabolism 
R 288 10.9 General function prediction only 
S 199 7.5 Function unknown 
- 861 26.1 Not in COGs 
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