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maritimus Y42, isolated from crude
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Abstract

Planococcus maritimus Y42, isolated from the petroleum-contaminated soil of the Qaidam Basin, can use crude oil
as its sole source of carbon and energy at 20 °C. The genome of P. maritimus strain Y42 has been sequenced to
provide information on its properties. Genomic analysis shows that the genome of strain Y42 contains one circular
DNA chromosome with a size of 3,718,896 bp and a GC content of 48.8%, and three plasmids (329,482; 89,073; and
12,282 bp). Although the strain Y42 did not show a remarkably higher ability in degrading crude oil than other
oil-degrading bacteria, the existence of strain Y42 played a significant role to reducing the overall environmental
impact as an indigenous oil-degrading bacterium. In addition, genome annotation revealed that strain Y42 has
many genes responsible for hydrocarbon degradation. Structural features of the genomes might provide a
competitive edge for P. maritimus strain Y42 to survive in oil-polluted environments and be worthy of further
study in oil degradation for the recovery of crude oil-polluted environments.
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Introduction
Oil spills occur frequently and pose a severe hazard to
pristine ecological conditions [1, 2]. On account of the
difficulty in degrading crude oil, the pollutant remains in
the environment to contaminate ground water and air,
affect crop growth and endanger human health [3, 4].
Bioremediation is currently recognized as the preferred
strategy to utilize biological activities to rapidly eliminate
hydrocarbon pollutants [5]. Many microorganisms,
especially bacteria, have been found to participate in the
process of biodegradation in contaminated environ-
ments [6, 7].
Planococcus, as a psychrotolerant and halotolerant

bacterium, was also reported as having the ability to
degrade crude oil [8–10]. For example, a cultured

Planococcus sp. strain S5 was described to be able to
grow on salicylate or benzoate [11], and Planococcus
alkanoclasticus was capable of degrading linear alkanes
[9]. Meanwhile, most of the Planococcus bacteria have
showed the ability to withstand heavy metals, produce
surfactants and adapt to cold and/or saline environments
[12–14]. Because of the above properties, Planococcus
exhibited a potential capability in the bioremediation of
extremely contaminated environments. Although many
studies have reported the genomic backgrounds of
Planococcus strains, oil biodegradation mechanisms in
Planococcus have rarely been discussed. In the present
study, we isolated a Planococcus strain from the
oil-contaminated soils in the Qinghai-Tibetan Plateau.
Our aims were to characterize the genome of this
oil-degrading strain and to further seek responsible strat-
egies associated with oil degradation in low-temperature
environments.
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Organism information
Classification and features
In this experiment, a novel cold-adapted strain Y42 was
isolated from oil-contaminated soils in the Lenghu oil
field, which is located in the northern margin of the
Qaidam Basin (93.34°E, 38.71°N). The molecular identifi-
cation of the strain was performed using the primers
27F and 1492R to amplify and sequence the 16S rRNA
gene [15]. Phylogenetic analysis based on 16S rRNA
gene sequence similarity showed that strain Y42 was
closely related to members of the genus Planococcus
(Planococcus maritimus (97%)). The strain Y42 was thus
recognized as a potential new member of Planococcus
(Fig. 1).
The strain Y42 was able to grow at moderately low

temperatures, and many members of the genus
Planococcus had been predominantly isolated from fro-
zen and/or saline environments [16]. Cell micrographs
were obtained by using a scanning electron microscope
(SEM) on cells grown in LB medium. Cells of strain Y42
were coccoid, typically 0.7–1 m in diameter, and
diplococci were observed, along with cell division septa
(Fig. 2a). Colony morphology was determined on LB
plates following 3–5 days of growth at 25 °C, which
resulted in the formation of orange, round, umbonate
colonies (Fig. 2b). Additional characteristics of P. maritimus
Y42 are shown in Table 1.
Crude oil-degrading characterization of strain Y42 was

completed under specified growth conditions with crude

oil as the sole carbon source by using a gas
chromatography-mass spectrometry (GC-MS) method.
The strain Y42 was cultured with MM medium (3.5 g of
MgCl2, 1.0 g of NH4NO3, 0.35 g of KCl, 0.05 g of CaCl2,
1.0 g of KH2PO4, 1.0 g of K2HPO4, 0.01 g of FeCl3,
0.08 g of KBr, and 24 mg of SrCl2·6H2O, pH 7.5) with
crude oil as a carbon source and incubated at 20 °C for
10 d [17]. A parallel experiment without inoculation was
used as the control. The remaining oil from the cultures
was extracted with 15 mL of hexane in a separating
funnel at room temperature, and anhydrous Na2SO4 was
then added to remove residual water. Ultimately, the
extracted oil was analysed using a GC-MS method [18].
For GC-MS analysis, one microliter of the filtered
solution was injected into a quartz capillary column
(DB-WAX, 30 m × 0.25 mm × 0.25 μm). The total area
of a detected individual hydrocarbon peak was
defined as its hydrocarbon concentration in crude oil.
The degradation rate of the components of crude oil
was determined according to the following equation:
η = (1-n1/n2) × 100%, where η, n1 and n2 are the
degradation rate of the components of crude oil, the
peak area of the components of crude oil remaining
in the samples, and the peak area of the components
of crude oil in the controls, respectively [19]. The
chromatograms revealed that the concentrations of
the components of crude oil, including n-alkanes,
branched alkanes, cyclanes, and aromatic hydrocar-
bons, were lower in the sample treated with the strain

Fig. 1 Phylogenetic tree of P. maritimus Y42 between known species of Planococcus genus. The phylogenetic tree constructed from the 16S
rRNA sequence together with other Planococcus homologs using MEGA 6.0 software suite. The evolutionary history was inferred by using
Neighbor-joining method based on model
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P. maritimus Y42 than the abiotic control sample
(Fig. 3a). After incubation for 10 days at 20 °C, the pre-
ferred degradation occurred in short-chain n-alkanes ran-
ging from C12 to C18, C12 was particular decomposed, by
approximately 50%. Meanwhile, the other straight-chain
alkanes and aromatic hydrocarbons were decomposed by
20–30% (Fig. 3b). The strain Y42 did not show a remark-
ably higher ability to degrade different components of
crude oil than other strains such as Bacillus [20, 21],
Pseudomonas [22, 23], Rhodococcus [24] and etceteras.
Even so, as an indigenous oil-degrading bacterium, the ex-
istence of the P. maritimus strain Y42 played a significant
role in reducing overall environmental impact of the oil
[25] and greatly enriched microbial community structures

in the oil-contaminated soils in low-temperature environ-
ments [26].

Genome sequencing information
Genome project history
This organism was selected for sequencing based on its
phylogenetic position and its ability to degrade crude oil.
The genome project was deposited in the genome online
database [27] and the complete genome sequence was
available in GenBank (NCBI-Genome). Sequencing,

Fig. 2 Scanning electron microscope (a) and Colony morphology
on the 216 L plate (b) of P. maritimus Y42

Table 1 Classification and general features of P. maritimus Y42

MIGS ID Property Term Evidence code

Classification Domain Bacteria TAS [42]

Phylum Firmicutes TAS [43]

Class Bacilli TAS [44, 45]

Order Bacillales TAS [46, 47]

Family Planococcaceae TAS [46, 48]

Genus Planococcus TAS [46, 49]

Species Planococcus

Strain Y42

Gram stain Positive TAS [50]

Cell shape Coccoid IDA

Motility Motile TAS [50]

Sporulation Non-sporulating TAS [50]

Temperature
range

4–30 °C IDA

Optimum
temperature

25 °C IDA

pH range;
Optimum

6–9; 7.5; IDA

Carbon source Yeast extract IDA

MIGS-6 Habitat Frozen soil IDA

MIGS-6.3 Salinity < 15% NaCl (w/v) TAS [50]

MIGS-22 Oxygen
requirement

Aerobic NAS

MIGS-15 Biotic
relationship

Free-living IDA

MIGS-14 Pathogenicity Non-pathogen NAS

MIGS-4 Geographic
location

China: Qaidam Basin,
Lenghu area

IDA

MIGS-5 Sample
collection

2015 IDA

MIGS-4.1 Latitude + 38.71 (38°43′10.11″) NAS

MIGS-4.2 Longitude + 93.34 (93°20′30.1″) NAS

MIGS-4.4 Altitude 2789 m NAS
aEvidence codes – IDA Inferred from Direct Assay, TAS Traceable Author
Statement (i.e., a direct report exists in the literature), NAS Non-traceable.
Author Statement (i.e., not directly observed for the living, isolated sample,
but based on a generally accepted property for the species, or anecdotal
evidence). These evidence codes are from the Gene Ontology project
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finishing and annotation were performed by the DOE
Joint Genome Institute (JGI). A summary of the project
information was provided in Table 2.

Growth conditions and genomic DNA preparation
P. maritimus strain Y42 was inoculated into LB liquid
medium and grown on a gyratory shaker (200 rpm) at
20 °C for 96 h. Genomic DNA of the strain was
extracted using the Bacterial Genomic DNA Extraction
Kit (AxyPrep) as per its operation instruction.

Genome sequencing and assembly
The complete genome sequence of P. maritimus strain
Y42 was generated by combined Illumina MiSeq with
PacBio platform [28]. The reads generated with Illumina
MiSeq platform were denovo assembled using Newbler
(version 2.8). The sub-reads generated from PacBio
platform were de novo assembled using Hierarchical
Genome Assembly Process (HGAP) [29]. Gaps between
contigs were closed by using the SPAdes-3.5.0. This
whole genome project (Bioproject ID: PRJNA371518)
has been registered and assembled sequence data

submitted at NCBI GenBank under the accession no.
CP019640.1-CP019643.1. And this finished genome was
deposited in IMG database with the Project ID:
Gp0209326.

Genome annotation
The completed genomic sequence was predicted using
the Glimmer software 3.0 [30]. tRNA genes were pre-
dicted using tRNAscan-SE 1.3.1 [31] and rRNA genes
were identified using Barrnap 0.4.2 [32]. The rest of
the non-coding rRNA genes were predicted by using
BLASTp against databases NCBI-NR database (http://
www.ncbi.nlm.nih.gov/) and genes function annota-
tions were assigned by the COG database (http://
www.ncbi.nlm.nih.gov/COG/).

Genome properties
The assembled genome of P. maritimus Y42 consisted of
one circular DNA chromosome with a size of
3,718,896 bp and a GC content of 48.8% and three plas-
mids (329,482; 89,073; and 12,282 bp) (Table 3). Genome
project information and genomic features are summa-
rized in Table 4. From a total of 4155 genes, 3947 were
annotated as predicted protein-coding sequences (CDS).
In addition, the genome included 70 tRNA genes, 27
rRNA genes, 4 ncRNA genes, and 108 pseudogenes.

Fig. 3 The gas chromatograms of crude oil after degradation by
P. maritimus Y42. a Total ion currents (TIC) of gas chromatography-
mass spectrometer (GC-MS) monitoring the component variations of
the residual crude oil (evaporated residue) before (the blue) and
after (the red) incubation with strain Y42. b Degradation rates of the
hydrocarbon components in evaporated crude oil by strain Y42 after
10 days of incubation at 20 °C

Table 2 Project information of the whole genome sequence of
P. maritimus Y42

MIGS ID Property Term

MIGS-31 Finishing quality Finished

MIGS-28 Libraries used Paired-end and PacBio

MIGS-29 Sequencing platforms Illumina Hiseq 2000 and PacBio

MIGS-31.2 Fold coverage PacBio: 300×

MIGS-30 Assemblers SPAdes v. 3.5.0,
HGAP

MIGS-32 Gene calling method Glimmer 3.02

Locus Tag B0X71

GenBank ID CP019640.1-CP019643.1

GenBank Date of Release April 14, 2017

GOLD ID Gp0209326

BIOPROJECT PRJNA371518

MIGS-13 Source Material Identifier Y42

Project relevance Biodegrading

Table 3 Summary of genome: 1 chromosome and 3 plasmids

Label Size (Mb) GC% INSDC identifier RefSeq ID

Chromosome 3.72 48.8 CP019640.1 NZ_CP019640.1

Plasmid 1 0.329482 44.8 CP019641.1 NZ_CP019641.1

Plasmid 2 0.089073 43.6 CP019642.1 NZ_CP019642.1

Plasmid 3 0.012282 45 CP019643.1 NZ_CP019643.1
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Open reading frames (ORFs) were assigned into 23
functional categories under the Clusters of Orthologous
Groups (COGs) and are represented in a circular
genome map in Fig. 4. The COG distribution of genes is
shown in Table 5. The genome map was visualized by
the CG View server.

Insights from the genome sequence
Genome annotation predicted that many genes support
the adaptability of strain Y42 to cold and crude
oil-contaminated environments. Based on the COG ana-
lysis, the genes related to general function prediction
only (R) and amino acid transport and metabolism (E)
were relatively enriched over the other functional genes.
The results indicate genome-wide selection pressure
[33]. Moreover, the abundance of genes related to func-
tions unknown (S) in strain Y42 suggested that the strain
may possess many new genes.
Further analysis showed that many key oxygenase

genes were located in the P. maritimus Y42 genome,
including those of catechol 1,2-dioxygenase (catA),

Fig. 4 The genome map of P. maritimus strain Y42. The circles show the different descriptions of the content in megabases, from the outside to
inward: outer two circles represent the predicted protein-coding sequences and CDS regions on the plus and minus strands, respectively. The
colors represent COG functional classification. The circle 3 represent the predicted rRNA and tRNA. The 4th circle shows GC content and 5th circle
exhibits the percent of GC-skew

Table 4 Genome statistics of P. maritimus Y42

Attribute Value % of Total

Genome size (bp) 4,149,733 100

DNA coding (bp) 3,541,381 85.34

DNA G + C (bp) 2,005,184 48.32

DNA scaffolds 4 100

Total genes 4283 100

Protein coding genes 4172 97.41

RNA genes 111 2.59

Pseudo genes 108

Genes in internal clusters NA

Genes with function prediction 3162 73.83

Genes assigned to COGs 2696 62.95

Genes with Pfam domains 3323 77.59

Genes with signal peptides 186 4.34

Genes with transmembrane helices 959 22.39

CRISPR repeats NA
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catechol 2,3-dioxygenase (catE), and cytochromes
P450. In addition, dehalogenase-coding genes were
also found in the chromosome; these genes were
involved in numerous metabolic processes such as the
degradation of chlorocyclohexane, chlorobenzene,
chloroalkane and chloroalkene [34]. A total of 9 genes
putatively encoding for crude oil metabolites were
identified in this genome (Fig. 5). The existence of
these oxygenase genes could regioselectively oxidize
substrates, especially natural aromatic compounds, by
transferring oxygen to the substrates and transforming
non-reactive hydrocarbons into available hydrocarbons
[35, 36]. However, genes responsible for n-alkane deg-
radation, such as the alkB gene, which is considered
as functional biomarker gene for alkane degradation
[37–39], were not found in the genome of strain Y42.
These results imply that the strain Y42 might have
some novel genes that participate in the catabolism of
n-alkane pollutants.
In addition, three cold shock proteins (WP_008296927.1,

WP_026692369.1, WP_008298364.1.) were predicted, and
these proteins were supposed to play important roles
under low-temperature conditions [40]. In total, 238 genes
were predicted to be involved in transport systems
for aromatic compounds, amino acids, carbohydrates,
lipids and inorganic ions. Among these genes, several
osmoprotectant transport system (Opu) genes were
identified to likely maintain the homeostasis of strain
Y42. Furthermore, a large number of divalent cation
transport and sulfate/phosphonate/nitrogen uptake
systems guarantee the supply of nutrient elements for
microbes in crude oil environments [41]. These genes
were essential for strain Y42 to gain a competitive
edge in oil-polluted soils.

Conclusions
The strain Y42, as a potential new member of Planococcus,
was isolated from a cold and crude oil-contaminated

Table 5 Number of genes of P. maritimus Y42 with the general
COG functional categories

Code Value % of totala Description

J 225 7.34 Translation, ribosomal structure and
biogenesis

A 0 0 RNA processing and modification

K 185 6.04 Transcription

L 117 3.82 Replication, recombination and repair

B 1 0.03 Chromatin structure and dynamics

D 36 1.17 Cell cycle control, Cell division,
chromosome partitioning

V 71 2.32 Defense mechanisms

T 144 4.7 Signal transduction mechanisms

M 134 4.37 Cell wall/membrane biogenesis

N 47 1.53 Cell motility

U 33 1.08 Intracellular trafficking and secretion

O 118 3.85 Posttranslational modification, protein
turnover, chaperones

C 183 5.97 Energy production and conversion

G 172 5.61 Carbohydrate transport and metabolism

E 297 9.69 Amino acid transport and metabolism

F 95 3.1 Nucleotide transport and metabolism

H 161 5.25 Coenzyme transport and metabolism

I 172 5.61 Lipid transport and metabolism

P 187 6.1 Inorganic ion transport and metabolism

Q 95 3.1 Secondary metabolites biosynthesis,
transport and catabolism

R 325 10.6 General function prediction only

S 180 5.87 Function unknown

– 1587 37.05 Not in COGs
aThe total is based on the total number of protein coding genes in the genome

Fig. 5 Gene clusters in the genome of P. maritimus strain Y42 encoding metabolic functions for oil degradation. The corresponding oil
degradation related genes are red colored
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environment. A genomic analysis of strain Y42 provided
the theoretical basis for the mechanism of oil degradation
by bacteria. Genes involved in cold shock and trans-
port systems point to the potential capacity of strain
Y42 for soil bioremediation contaminated by aromatic
compounds in cold environments. Genomic research
on strain Y42 would also provide a blueprint for the
application of bioremediation and recovery in cold
oil-polluted environments.

Abbreviation
CDSs: protein-coding sequences; COG: Clusters of Orthologous Groups
categories; GC-MS: gas chromatography and mass spectrometric Detector;
ORFs: open reading frames
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