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Abstract

Background: Microbial communities are ubiquitous throughout ecosystems and are commensal with hosts across
taxonomic boundaries. Environmental and species-specific microbiomes are instrumental in maintaining ecosystem
and host health, respectively. The introduction of pathogenic microbes that shift microbiome community structure
can lead to illness and death. Understanding the dynamics of microbiomes across a diversity of environments and
hosts will help us to better understand which taxa forecast survival and which forecast mortality events.

Results: We characterized the bacterial community microbiome in the water of a commercial shellfish hatchery in
Washington state, USA, where the hatchery has been plagued by recurring and unexplained larval mortality events.
By applying the complementary methods of metagenomics and metaproteomics we were able to more fully
characterize the bacterial taxa in the hatchery at high (pH 8.2) and low (pH 7.1) pH that were metabolically active
versus present but not contributing metabolically. There were shifts in the taxonomy and functional profile of the
microbiome between pH and over time. Based on detected metagenomic reads and metaproteomic peptide
spectral matches, some taxa were more metabolically active than expected based on presence alone (Deltaproteobacteria,
Alphaproteobacteria) and some were less metabolically active than expected (e.g., Betaproteobacteria, Cytophagia). There
was little correlation between potential and realized metabolic function based on Gene Ontology analysis of detected
genes and peptides.

Conclusion: The complementary methods of metagenomics and metaproteomics contribute to a more full
characterization of bacterial taxa that are potentially active versus truly metabolically active and thus impact
water quality and inter-trophic relationships.
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Background

Microbial communities are known to be closely associ-
ated with aquatic species and to be important regulators
and/or indicators of macrofaunal health (e.g. [1]). Shifts
in marine microbiomes can forecast impending disease
or death in bivalves and can thus be important biomarkers
for ecosystem health (e.g., [2]). The same dynamics be-
tween host and microbiome occur in commercial aquacul-
ture, where microbiome dynamics may hold the key to
understanding previously unexplained massive larval mor-
tality events.

Aquatic systems are home to dynamic interactions
among microbial species, macrofauna, and the physical
environment, the outcomes of which determine ecosys-
tem health. Understanding which taxa are present in a
given system is a first step towards uncovering these dy-
namics, which can lead to more accurate predictions
and modeling of ecosystems. However, especially for mi-
crobes, detected presence does not accurately predict
metabolic contribution to the ecosystem [3-5]. Micro-
biome taxonomy is poorly correlated with environmental
variables, whereas metabolic potential of functional
groups of microbes is well predicted by environment [6].
Many microbes will produce different metabolites,
dependent upon local biotic and abiotic conditions, and
thus interact differently with the ecosystem [7-9].
Herein lies a limitation of DNA markers in characteriz-
ing an active microbiome. Establishing the presence of a
particular microbial taxon and then extrapolating its
ecosystem function could easily misrepresent the true
impact of the microbial community on the system. By
combining DNA (metagenomics) with protein abun-
dance (metaproteomics) we can achieve a substantially
more accurate understanding of microbial metabolic
contributions in a given environment.

Metaproteomics datasets from aquatic systems are
establishing a foundation for better understanding the
roles that microbes play as they respond to different en-
vironmental conditions. As oceans rapidly change in re-
sponse to increasing pollution and emissions, bacterial
communities will respond functionally to shifts in pH
[10] and temperature [11], among other changes.
Environmentally-driven physiological shifts in micro-
biome function could lead to changes in nutrient cycling
and biogeochemical cycles. If there is functional redun-
dancy across taxa in a microbiome [6] then some meta-
bolic activities could be maintained. This type of
community compensation and balance would be difficult
to decipher in a metagenomics dataset alone. Under-
standing microbial community function is essential to
fully characterizing the dynamic interactions in an eco-
system context.

Here, we characterize the microbiome of a shellfish
hatchery at two different pH during the culture of
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Pacific geoduck clam larvae. We combine metagenomics
and metaproteomics to better understand how microbial
presence overlaps with or differs from microbial meta-
bolic activity. The datasets support important founda-
tional knowledge for better understanding microbial
dynamics during shellfish aquaculture.

Methods

Larval rearing and microbiome sampling

Water samples were taken from a commercial hatchery
for microbiome analysis on days 1, 5, 8 and 12 of a
grow-out trial where Pacific geoduck larvae (4 days post
fertilization on day 1) were held at two pH levels (Add-
itional file 1). Larval growth was suppressed at low pH,
following a typical trend of bivalve larval response to low
pH that has been described elsewhere (e.g., [12]). Water
was pumped into a commercial shellfish hatchery from
~ 100 ft. deep in Dabob Bay, WA and maintained at pH
7.1 or 8.2 to mimic the low pH detected in Hood Canal,
WA (contingent to Dabob Bay) and open ocean pH, re-
spectively. The pH 8.2 treatment water was buffered with
sodium bicarbonate, and CO, aeration was used to
maintain water at pH 7.1. It should be noted that there
could be secondary influences from the sodium bicar-
bonate treatment and CO, aeration, however, from here
on out we will refer to differences in terms of pH. Each
pH treatment had its own header tank for treating water
where pH was maintained; flow rate into the header
tanks was 1.8 gallons per minute (gpm) and into each
treatment tank was 0.6 gpm. Three replicate 200 L tanks
(flow-through) were used for each pH treatment. Larvae
were fed a mix of flagellates and diatoms (7isochrysis
lutea, Nannochloropsis oculata, Chaetoceros muelleri,
Paviova lutheri, Rhodomonas salina, Tetraselmis suecica)
with 30,000 cells/mL of algae in the larval tanks at day 2
post-fertilization, 40,000 cells/mL by day 3, and 50,000
cells/mL by day 4 through the end of the experiment.
Water (3.8L) was collected from larval tank effluent
filtered through serial Swinnex filters (Sigma-Aldrich,
Saint Louis, MO) of 5, 0.7, and 0.22 um. The 0.22 pm
filters were folded and frozen in individual plastic
bags at — 80 °C.

Metagenomics

DNA for library construction was isolated from 0.22 um
filters from a single tank from each pH treatment from
days 5, 8, and 12 for pH 8.2 and days 1, 8, and 12 for
pH7.1. DNA was isolated with the DNeasy Blood and
Tissue Kit (Qiagen, Hilden, Germany), following a modi-
fied version of the manufacturer’s Gram-Positive Bac-
teria protocol. Briefly, filters were unfolded and placed
in plastic tubes (1.7 mL) and incubated with Buffer Al
(400 pl) and proteinase K (50 pL) overnight at 56 °C. The
next morning, ethanol (100%, 400 pl) was added to each
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sample and samples were eluted in Buffer AE (50 pl).
Samples were quantified on a Qubit 3.0 with the Qubit
1x dsDNA HS Assay Kit (Invitrogen, Carlsbad, CA)
using 5 pl of sample.

Libraries were prepared for multiplexing using a
Nextera DNA Flex Kit (Illumina, San Diego, CA) following
the manufacturer’s protocol for DNA quantities < 10 ng,
with the following adjustments. Polymerase chain reaction
(PCR) steps for library preparation were performed in thin-
walled PCR tubes (200 ul) with a PTC-200 thermalcylcer
(MJ Research, Bio-Rad Laboratories, Hercules, CA); mag-
netic separations were performed in tubes (1.7 mL) using a
DynaMag?2 (Invitrogen). Libraries were quantified on a
Qubit 3.0 with the Qubit 1x dsDNA HS Assay Kit (Invitro-
gen). Library quality was assessed on a 2100 Bioanalyzer
with a High Sensitivity DNA Kit (Agilent, Santa Clara, CA).
The average fragment size was ~ 530 bp. The six metagen-
ome libraries were pooled and sequenced on an Illumina
HiSeqX System with a 150 bp paired-end read length.

Sequencing reads were quality trimmed using TrimGa-
lore (0.4.5 [13];). Reads were subjected to two rounds of
trimming; initial quality and adapter trimming, followed
by removing 20bp from the 5" end of each read. Pre-
and post-trimming reads were assessed using FastQC
(0.11.7 [14];) and MulitQC (1.6.dev0 [15];).

Gene prediction with the trimmed sequencing reads
was performed using MetaGeneMark (v3.38 [16];) to
produce a translated metagenome to create a database
for metaproteomic protein inference.

Trimmed sequencing reads were functionally anno-
tated with a combination of MEGANG6 (v 6.18.3 [17];)
and DIAMOND BLASTx (v 0.9.29 [18];). Annotation
with DIAMOND BLASTx [18] was run against NCBI nr
database (downloaded September 25, 2019). The result-
ing DAA files were processed for importing into MEGA
N6 with the add-meganizer tool using the following
MEGAN6 mapping files: prot_acc2tax-Jul2019X1.abin,
acc2interpro-Jul2019X.abin, acc2eggnog-Jul2019X.abin.
This work was facilitated through the use of advanced
computational, storage, and networking infrastructure
provided by the Hyak supercomputer system at the
University of Washington.

To perform taxonomic classification, meganized DAA
files were imported and converted to RMAG6 files via the
MEGANG6 graphical user interface “Import from BLAST”
dialog, using the default Naive LCA settings and the
following mapping files: prot_acc2tax-Jul2019X1.abin,
acc2interpro-Jul2019X.abin, acc2eggnog-Jul2019X.abin,
acc2seed-May2015xx.abin. All mapping files were down-
loaded from the MEGANG website (https://software-ab.
informatik.uni-tuebingen.de/download/megan6/old.
html).

Diversity index (Shannon-Weaver and Simpson-
Reciprocal) values were determined using MEGANG6 by
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generating a Comparison with the Normalized Reads
setting.

Metaproteomics

Filters (0.22 um) from two separate tanks at each pH treat-
ment and all four time points (days 1, 5, 8, 12) (n = 8) were
opened in a cell culture dish on ice. Four washes of ice
cold 50 mM NH,HCO; (1 mL) were used to rinse the cells
from the filters. The wash containing cells was centrifuged
at 10,0000 rpm for 30 min. Liquid was removed from the
tubes, leaving pelleted cells. Pellets were resuspended in
50 pm NH,HCO;3; with 6 M urea (100 pl). Each sample
was sonicated three times (Sonic Dismembrator Model
100, Fisher Scientific; power set between 1 and 2) and
chilled between sonications. Protein digestion and peptide
desalting followed the protocol outlined in [19].

Metaproteomics data were acquired on a Q-Exactive
mass spectrometer (ThermoFisher, Waltham, MA). Both
the pre-column (3.5 cm) and analytical column (30 cm)
were packed in-house with Dr. Maisch (Ammerbuch,
Germany) C18 3 um beads. Peptide spectra were col-
lected from 5 pl injections of 1 pg total peptides in tripli-
cate over a 60min gradient of 5-35% acetonitrile.
Samples were run in randomized groups of four with a
blank injection in between each group and a quality con-
trol standard (Pierce Peptide Retention Time Calibration
mix + bovine serum albumin, ThermoFisher) after every
second group of four. Proteomics data can be found in
the ProteomExchange PRIDE repository under the ac-
cession number PXD020692.

Raw mass spectrometry files were searched against a
database that included the translated metagenome (see
above) and common lab contaminants (cRAPome.org)
with Comet 2018.01 rev.2 [21, 22]. After Comet, the
TransProteomic Pipeline (TPP) was run to statistically
score confident peptide spectra using Peptide prophet
and infer proteins with Protein Prophet [23, 24]. Results
from the TPP were analyzed with Abacus with an FDR
cut-off of 0.01 (combined file ProteinProphet probability
of 0.93) to generate consensus peptide and protein as-
signments across the entire experimental dataset (Add-
itional file 2 [25]). Only proteins with at least 2 unique
peptides identified across all experimental replicates
were included in downstream analyses. Technical repli-
cates were averaged for the analysis. Normalized spectral
abundance (NSAF) values, calculated by Abacus, were
used to analyze metaproteomic data across time and pH
treatments with non-metric multidimensional scaling
plot (NMDS) based on a Bray-Curtis dissimilarity matrix
and analysis of similarity (ANOSIM) with the vegan
package [26] in R v 3.6.3.

The change in detected taxa and Gene Ontology (GO)
terms (i.e. abundance of peptides associated with a spe-
cific taxonomic group or GO term) were plotted in R
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using the peptide spectral matches (PSMs) or reads for a
specific taxa/GO term normalized to all PSMs or reads
for a mass spec run/library. The first time point in the
plots was set to 0 and for a subsequent time point (n)
were [ratio of reads or PSMs],-[ratio of reads or
PSMs],.;. The ratios of PSMs versus the ratios of reads
were plotted on an x-y plot with a linear model line of
best fit and corresponding R* value to determine how
well reads and PSMs corresponded at each day and pH.

For comparison of statistically significant functional
and taxonomic differences between pH treatments at
each time point, metaGOmics [27] was used to compare
proteins inferred between pH and between days within
each pH treatment. All Comet search results (see above)
were analyzed together with percolator [28] and the
resulting file was parsed into individual mass spectrom-
etry experiment files. Peptide spectral matches for each
peptide were averaged within a day and pH treatment so
that a single results file for each day/pH was uploaded to
metaGOmics. The background proteome for metaGO-
mics was the metagenome-derived proteins inferred in
the Comet-to-Percolator pipeline. Only prokaryotic se-
quences were used for the analysis since a preliminary
analysis of the data revealed confounding contamination
from bivalve and algal peptides. The portal for the meta-
GOmics analysis can be found here: https://www.yeastrc.
org/metagomics/viewUploadedFasta.do?uid=QCqX3
ZIvD4KkDZ2B. Taxonomic and GO results were consid-
ered significant if the metaGOmics Laplace corrected q-
value was less than or equal to 0.05.

Results

Metagenomics

DNA sequencing yielded a total 489 million paired se-
quencing reads across the six libraries. Raw sequencing
data is available in the NCBI sequencing read archive
BioProject PRINA649049. Quality trimming resulted in
474.1 million paired reads that were used for annotation
and taxonomic assignment. Sequences were assigned to
26 distinct taxonomic Classes (Additional file 3) and to
62 distinct Gene Ontology terms (Additional file 4). The
Shannon-Weaver index (H) was stable across time and
pH at a value of about 5, as was the Simpson’s reciprocal
index (1/D) (Additional file 5). Through time, the largest
changes in Class abundance was observed in Gamma-
proteobacteria, and Alphaproteobacteria (Fig. 1).

Metaproteomics

Across all samples, 983 proteins with at least 2 unique
peptides across all replicates were inferred from the
mass spectrometry data (Additional file 6). There was a
difference in bacterial community protein abundance
over time (Day 1 through 12) (ANOSIM R =0.4123, p =
0.001), but not by pH (R=0.04129, p =0.207) (Fig. 2).
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Generally, metaproteomes clustered into early (Days 1
and 5) and late (Days 8 and 12) time points across axis 1
of the NMDS (Fig. 2). Proteins that are strongly, posi-
tively loaded along axis 1 of the NMDS are the driving
force behind the proteome differentiation. There were
six proteins with axis 1 loadings of at least 0.8 and a p-
value <0.001: elongation factor la, ammonia monooxy-
genase beta subunit, uncharacterized symporter, putative
biopolymer transport protein ExbB homolog, oligopep-
tide binding protein AppA, and an unannotated protein.
The metabolically active fraction of the hatchery water
microbiome (i.e. the taxa inferred from the metaproteo-
mics dataset) represented 25 taxonomic groups from
Kingdom through Class levels (Fig. 3).

Taxonomy

The prokaryotic taxonomic community in hatchery
water varied by time and pH, and patterns of variability
differed between the metagenomic and metaproteomic
datasets (Fig. 3). R? values for the correlation between
metagenomic reads and metaproteomic peptide spectral
matches deviated from 1, revealing a disconnect between
taxonomic presence (detected genes) and taxonomic ac-
tivity (abundance of proteins), although the correlation
between metagenomic and metaproteomic abundances
was high for days 8 and 12 at pH7.1 (R*> ~0.7) (Add-
itional file 7). Across both pH, Deltaproteobacteria and
Alphaproteobacteria had higher metabolic activity than
would be expected from abundance based on metage-
nomic reads, whereas Betaproteobacteria, Cytophagia,
Gammaproteobacteria, and Flavobacteriia had lower ac-
tivity. A subset of the taxa detected in the metagenomics
dataset were not metabolically active based on our meta-
proteomics technique (Additional file 8).

Function

The relative abundance of metagenomic reads for protein
functional categories compared to metaproteomic peptide
spectral matches for these same functional categories var-
ied across time and pH (Fig. 4). The differences suggest a
mismatch between potential and realized physiological
function of the hatchery microbiome. For example, the
PSMs corresponding to the GO term “transport” in-
creased between days 1 and 5 and then decreased on day
8 in pH 7.1, whereas metagenomic reads for “transport”
maintained a continuous gradual decrease from day 1 to
12. In general, the changing abundance of PSMs for func-
tional categories was more dynamic than the actual gene
abundances. Metaproteomics data for functional categor-
ies correlated with the metagenomics data better than for
taxonomic groups with R? values ranging from 0.68 to
0.79 (except for pH 7.1, day 1 for which all presented GO
terms were not detected in the metaproteomics dataset)
(Additional file 9).
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Fig. 1 Abundance of taxonomic groups based on the metagenomic dataset for each day and pH. Time points (days) are shown at the top of the
plot, while pH is at the bottom. There were no metagenomic libraries sequenced for day 1, pH 8.2 or day 5, pH 7.1
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Significant changes over time and pH

MetaGOmics analysis revealed the GO terms that chan-
ged significantly over time (Fig. 5; Additional file 10). At
pH 8.2 peptides associated with the GO term “intracellu-
lar part” increased significantly from day 5 to 8. The
contributing taxa to the GO term “intracellular part”
were Bacteria, Bacteroidetes, Cyanobacteria, and Flavo-
bacteriia. Between days 8 and 12 at pH 8.2 the GO terms
“protein-chromophore linkage” and “electron transport
chain” saw a significant increase in associated peptides.
These peptides were associated with the taxonomic
groups Bacteria, Bacteroidetes, Cyanobacteria, Flavobac-
teriia, and Gloeobacteria. At pH 7.1, the three GO terms
that changed significantly between days 8 and 12 were
“nucleotide binding”, “catalytic activity”, and “anion
binding”. The taxa that were associated with the peptides
in these three GO terms at pH 7.1 were Bacteria, Proteo-
bacteria, Cyanobacteria, Verrucomicrobia, Bacteroidetes,
candidate division NC10, Betaproteobacteria, Alphapro-
teobacteria, Sphingobacteriia, Bacteroidia, Gammapro-
teobacteria, Flavobacteriia, Verrucomicrobia. There were

no GO terms that differed significantly between pH on
any of the days.

Discussion

This is the first study to assess the potential (genomic)
versus realized (proteomic) function of a commercial bi-
valve hatchery microbiome. We characterized the micro-
bial community present in hatchery water over 12 days
and at two pH levels during production of Pacific geo-
duck larvae. ‘Omics tools facilitate high resolution ana-
lyses of molecular level processes, but genomics,
transcriptomics, proteomics, and metabolomics all have
the capability of addressing distinct, occasionally over-
lapping, sets of hypotheses. Genomics analyses are fre-
quently applied to respond to a diversity of hypotheses
in environmental science, because DNA is more stable
than RNA and proteins, and genomics, unlike proteo-
mics, does not depend upon a pre-existing database to
get results. However, genomics analyses cannot clarify
real-time metabolic activity, which limits the interpret-
ation of the data to the potential, rather than realized,
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function of a gene. In many metagenomics datasets, in-
terpretation extends beyond the limitations of the data
to assume realized function. In terms of environmental
modeling and predictions, this over-interpretation of
data may under- or overestimate community contribu-
tions to biogeochemical cycling. The parallel analysis of
metagenomics and metaproteomics data herein defini-
tively demonstrates that potential genetic function does
not accurately predict which proteins are translated for
probable metabolic activity. Metaproteomics analysis
provides the additional layer of realized microbial func-
tion that allows for fuller interpretation of community
biological function. By combining metagenomics and
metaproteomics, we have leveraged the increased sensi-
tivity of genomics with the better estimation of physio-
logical activity through metaproteomics.

The relative abundances of bacterial classes in the
hatchery microbiome over the entire time period and
across both pH was similar between the genomic and
proteomic datasets, but variances indicate differences be-
tween potential and realized functions of the community.
Alphaproteobacteria was the most abundant and active
bacterial Class, comprising the largest number of

metagenomic reads and metaproteomic peptide spectral
matches (PSMs). The phylum Proteobacteria, which con-
tains the Classes Alpha-, Beta-, Delta-, and Gammaproteo-
bacteria, often dominates marine 16SrRNA microbiome
datasets associated with hatcheries and shellfish [2, 29-33].
Gammaproteobacteria, Flavobacteriia, and Cytophagia had
higher relative abundances in the metagenomic datasets
compared to the metaproteomic datasets, suggesting rela-
tively low metabolic activity. Alphaproteobacteria, Gamma-
proteobacteria, and Flavobacteriia have been found to
stabilize microbial ecosystems within arctic mesocosms
[34] and may play a similar role in the hatchery micro-
biome where they dominate in abundance. Deltaproteobac-
teria, Actinobacteria, and Cyanobacteria were all detected
at relatively higher abundances in the metaproteomics data-
set than would be expected from abundance of metage-
nomic reads. These results underline the inherent and
potential bias in a single ‘omics dataset.

The largest differences in the hatchery microbiome
occurred over time, rather than between pH. Bacterial
community diversity in hatcheries is dynamic [29, 30,
35] as the microbiome of incoming water shifts and
as the larvae enter different developmental stages.
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Our microbiome sampling encompassed days 6
through 17 post-fertilization and the larval phase
transition from prodissoconch I to II, during which
the larvae undergo profound physiological changes.
The relative contributions of the different bacterial
taxa shifted dramatically over time, as did the poten-
tial and realized functions of the community, repre-
sented by GO terms. In the metagenomics dataset,
Gammaproteobacteria, Alphaproteobacteria, and Fla-
vobacteriia dominated in overall abundance at both

pH; however, the dominant taxa for protein abun-
dance were more varied with high counts for Delta-
proteobacteria, Alphaproteobacteria,
Gammaproteobacteria, Bacteroidetes, Flavobacteriia,
Cyanobacteria (including Gloeobacteria), and the Acti-
nobacteria phylum. There is likely a dynamic relation-
ship between larval shellfish and their surrounding
microbiome, which may at least partially dictate
which taxa are present and/or active. In an oyster lar-
vae culture, Alteromondaceae (Gammaproteobacteria)
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G0:0045454 cell redox homeostasis

G0:0046718 viral entry into host cell

GO0:0071840 cellular component organization or biogenesis
G0:0071973 bacterial-type flagellum-dependent cell mobility
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dominated the microbiome during very early larval devel-
opment, followed by Flavobacteriaceae (Flavobacteriia) and
Rhodobacteraceae (Alphaproteobacteria) between 1 and 16
days post-fertilization [30]. This larval-microbiome inter-
relationship may contribute to some of the observed differ-
ences in the geoduck larval hatchery microbiome.

Changes in taxonomy do not necessarily reflect shifts
in community function, but some physiological pathways
did change over time, especially between days 8 and 12.
Between days 5 and 8, there was an increase in abundance
of peptides associated with the GO term “intracellular part”
at pH 8.2 from the taxa Bacteria, Cyanobacteria, and Flavo-
bacteriia. The largest increases in abundance of peptides as-
sociated with GO terms occurred between days 8 and 12,
with peptides detected associated with “nucleotide binding”
(pH 7.1), “catalytic activity” (pH 7.1), “anion binding” (pH
7.1), “protein-chromophore linkage” (pH 8.2), and “electron
transport chain” (pH 8.2). These changes suggest an environ-
mental shift that altered community metabolism with pep-
tides in these significantly changing categories contributed
by taxa such as Alphaproteobacteria, Betaproteobacteria,
Gammaproteobacteria, Cyanobacteria, Sphingobacteriia, and
Verrucomicrobia. Cyanobacteria may increase photosyn-
thetic activity at increased levels of CO,/low pH [36] and it
was a significant contributor to changing physiology over
time at both pH suggesting a dynamic physiological en-
vironmental response. Bacterial communities are

sensitive to shifts in the surrounding phytoplankton
community since phytoplankton represent an import-
ant nutrient source. From mesocosm experiments, bac-
terial production and enzymatic activity change with
the onset and decline of phytoplankton blooms [37,
38]. Since the shellfish hatchery that housed our micro-
biome relies on water pumped from a natural source, it
is possible that the bacterial physiological changes de-
tected are in response to changing environmental con-
ditions in the source water. However, since the
microbiome is likely also impacted by its proximity to
the rapidly developing larval shellfish, the hypothesis of
microbiome-larval interdependence cannot be ruled
out. Further work to control for variability in incoming
water and larval impacts on the surrounding micro-
biome would be needed to separate these variables.
Bacterial communities respond to changes in pH
mostly through secondary responses to pH impacts on
their source of dissolved and particulate organic matter
(i.e. phytoplankton) [37—41]. When a measurable bacter-
ial community physiological shift occurs in response to
pCO,, it may be mediated by availability of nutrients
which may, in turn, be controlled by the local primary
producers [37, 42]. Primary impacts of pH on bacteria
are possible; in a low pH environment, ocean bacteria
may physiologically compensate for elevated pCO, (in-
creased H" ions) by up-regulating proton pumping
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mechanisms to maintain cellular pH homeostasis [11,
43]. Changes in pCO, seem to have little impact on the
taxonomic groups detected in a microbiome [34]; there
may be, however, some rare taxa that do respond dir-
ectly to shifts in pCO, [40]. Similar to numerous meso-
cosm studies, we detected no significant change in
peptide abundance between pH treatments, suggesting
little physiological impact of pH on the hatchery micro-
biome. However, it is possible that the live algae that is
fed to the larvae and the geoduck larvae themselves were
responding to the changes in pH [12, 44], which could
have led to secondary impacts on the microbiome. The
geoduck larvae were likely stressed at low pH, which can
be manifested in metabolic changes and decreases in
growth rate [12]. Between the two pH treatments, there
were different GO terms that changed significantly over
time, perhaps indicating a subtle, secondary impact of
pH on the hatchery microbiome. The two GO terms
that were significantly differentially abundant between
days 8 and 12 at pH 8.2 (“protein-chromophore linkage”
and “electron transport chain”) are associated with cellu-
lar metabolism. The shifts in peptides associated with
these terms suggests a change in metabolic demands or
capacity at pH 8.2. The changes at pH7.1 (“nucleotide
binding”, “catalytic activity”, and “anion binding”) also
suggest changes to cellular activity, but perhaps through
different pathways than at pH 8.2. Bacterial physiology
as measured by extracellular enzyme activity and bacter-
ial production sometimes changes in response to pH
and/or pH impacts on a nutrient source [37, 38, 42, 43,
45], and a similar physiological impact is likely occurring
at the different pH treatments in the hatchery. These re-
sults highlight the interconnected nature of aquatic food
webs and that the sensitivity of one component can have
cascading effects throughout an interconnected system.

Conclusions

The parallel analysis of metagenomics and metaproteo-
mics datasets provides important insight into the diver-
gence between potential and realized metabolic function
of a hatchery microbiome. These data are necessary for
establishing a baseline understanding of water quality,
which is an essential resource for an economically im-
portant industry. There were no significant mortality
events among the geoduck larvae that were grown
throughout this experiment that co-occurred with our
microbiomes. Previous work has found that larval health
in commercial hatcheries may be more dependent on
the presence of specific microbial taxa that confer im-
munity, rather than on an influx of harmful microbes
[31, 46]. Since bivalve larval immune function bio-
markers are detectable from very early in development
[47], the timing of the presence of immune-conferring
taxa may also be essential for success of a particular
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cohort. Some of the taxa detected in our study may be
part of the microbiome essential for an effective immune
response and survival, but it is difficult to discern which
taxa this would be without differential mortality between
larval cohorts. There is a correlation between host
microbiome diversity and the complexity of the immune
system, with more stable microbiomes in invertebrates
with innate immune systems [48]. It is worth identifying
this stable, core microbiome in ecologically and com-
mercially important taxa as a means to better under-
stand mechanisms of environmental response and
survival. A dataset has yet to be published that defini-
tively determines why larval cohorts survive or die in a
commercial hatchery setting and the current work adds
an important piece to solving this costly puzzle.
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